
2/25/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 7	

Feb 24, 2014	

Administrative Details	

•  Lab 2 due today	

•  Any questions?	

•  You have to use “tar” to submit your code this

time…be careful!	

•  Lab 3 – no design doc! But you need to do
warm-up problems before lab on Wed	

•  Extra credit on labs	

	

2	

Last Time	

•  We began talking about how Vectors are
implemented in Java	

3	

Today’s Outline	

•  Finish up Vector implementation	

•  Learn how to “mathematically” analyze the

performance of Vectors	

•  How long do algorithms take to run?	

•  The time-space tradeoff	

•  Very important concept in computer science!	

4	

Implementing Vectors	

•  Vectors are really just arrays of Objects	

•  Key difference is that the number of elements

can grow and shrink dynamically	

•  How are they implemented in Java?	

•  What instance variables do we need?	

•  What methods? (start simple)	

•  Constructor(s): Vector(), Vector(size), !
!get(index), set(index, Obj), !
!add(Obj), add(index, Obj), remove(index),!
 isEmpty(), size()!

•  Using parameterized data types	
 5	

Extending the Array	

•  How should we extend the array?	

•  Possible extension methods:	

•  Add one to array when capacity is reached	

•  Double array when capacity is reached	

•  Let’s analyze the two techniques	

•  Mathematically	

•  Experimentally (speed tests)	

	

6	

2/25/14

2

ensureCapacity	

•  How to implement ensureCapacity(int minCapacity)?	

	
 // post: the capacity of this vector is at least minCapacity !

 public void ensureCapacity(int minCapacity) { !
 if (elementData.length < minCapacity) { !
! ! //First we need to figure out “newLength”!

 int newLength = elementData.length; // initial guess !
! if (capacityIncrement == 0) { !
! // increment of 0 suggests doubling (default) !

 if (newLength == 0) {!
 newLength = 1;!
 } !
! while (newLength < minCapacity) { !
! newLength *= 2; !
! } !

 ! } else { !
 // increment != 0 suggests incremental increase !
! while (newLength < minCapacity) { !
! newLength += capacityIncrement; !
! } !

 } !
7	

 // assertion: newLength > elementData.length. !
 Object newElementData[] = new Object[newLength]; !
 int i; !
!
 // copy old data to array !
 ! for (i = 0; i < elementCount; i++) { !
! newElementData[i] = elementData[i]; !
! } !

!
! elementData = newElementData; !
! // garbage collector will (eventually) pick up old elementData !

 } !
 // assertion: capacity is at least minCapacity !
 } !

	

8	

