
2/22/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 6	

Feb 21, 2014	

Administrative Details	

•  Good job on Wed!	

•  Lab 2 is a little tricky (but fun)	

•  Graders will (hopefully) have Lab 1 graded by

next Wednesday	

•  Let me know if TAs don’t show up!	

Lab 2	

•  Three classes:	

•  Table.java	

•  FrequencyList.java	

•  WordGen.java	

•  Two Vectors of Associations	

•  toString() in Table and FrequencyList for debugging	

•  What are the key stages of execution?	

•  Test code thoroughly before moving on to next stage	

•  Use WordFreq as example	

Last Time	

•  Learned about Assertions and pre/post
conditions	

•  Discussed Associations 	

•  Key-value pairs	

•  General use class; keys and values are Objects	

Review: Association Class	

import structure5.*;!
class Association {!
!protected Object key;!
!protected Object value;!

!
!//pre: key != null!
!public Association (Object K, Object V) {!
! !Assert.pre (K!=null, “Null key”);!
! !key = K;!
! !value = V;!
!}!

!
!public Object getKey() {return key;}!
!public Object getValue() {return value;}!

!
!public Object setValue(Object V) {!
! !Object old = value;!
! !value = V; !
! !return old;!
!}!

}!

Today’s Outline	

•  Learn about Vectors	

•  Dynamically resizable array	

•  Easier to use (in most cases) than arrays	

•  How are Vectors implemented?	

2/22/14

2

Recap: Dictionary.java (version 1)	

protected Association words[] = new Association[5];!
public Dictionary() {!
!words[0] = new Association("perception", "Awareness of an

! object of thought");!
!words[1] = new Association("person", "An individual capable of

! moral agency");!
!words[2] = new Association("pessimism", "Belief that things

! generally happen for the worst");!
 words[3] = new Association("philosophy", "Literally, !

! love of wisdom.");!
 words[4] = new Association("premise", "A statement whose

! truth is used to infer that of others");!
}!
!
// post: returns the definition of word, or "" if not found.!
public String lookup(String word) {!
 for (int i = 0; i < words.length; i++) {!
 Association a = words[i];!
 if (a.getKey().equals(word)) { //compare word to key !
 // note cast to recover type from Object!
 return (String)a.getValue(); //return value!
! ! }!

 } !
! return "";!

}!

Recap: Dictionary.java (version 2)	

protected Vector defs;!
public Dictionary() {!
!defs = new Vector();!

}!
!
public void addWord(String word, String def) {!
!defs.add(new Association(word, def));!

}!
!
// post: returns the definition of word, or "" if not found.!
public String lookup(String word) {!
 for (int i = 0; i < defs.size(); i++) {!
 Association a = (Association)defs.get(i);!
 if (a.getKey().equals(word)) {!
 return (String)a.getValue(); !
 }!
 }!
 return "";!
}!

Dictionary.java (version 2)	

public static void main(String args[]) {!
!Dictionary dict = new Dictionary();!
!dict.addWord("perception", "Awareness of an object of !

!thought");!
!dict.addWord("person", "An individual capable of moral !

!agency");!
!dict.addWord("pessimism", "Belief that things generally !

!happen for the worst");!
!dict.addWord("philosophy", "Literally, love of ! !

!wisdom.");!

!dict.addWord("premise", "A statement whose truth is used to
!infer that of others");!

}!

Dictionary	

protected Vector defs;!
public Dictionary() {!
!defs = new Vector();!

}!
!
public void addWord(String word, String def) {!
!defs.add(new Association(word, def));!

}!
!
// post: returns the definition of word, or "" if not found.!
public String lookup(String word) {!
!Association a = (Association)defs.get(word);!
!if (a != null)!
! !return (String)a.getValue(); !
!else !
! !return “”;!

}!

Does this work?	

No! We store
Associations, not
words…	

	

 Abstraction	

•  What “obvious” method is missing from
Dictionary.java?	

•  getWords() - returns Vector defs	

•  Why would we NOT include a getWords() method?	

•  Exposes data representation to program	

•  Hard to go back later and change the representation (i.e.,

to a List or HashMap)	

•  Abstraction: Don’t expose any details about how
Dictionary is implemented! 	

Importance of equals() and Vectors	

•  If we were implementing Vector.contains(myObject),
what would we do?	

•  Loop through elements and return true if one element

equals myObject	

•  What does this require?	

•  Properly defined equals() method in myObject class!	

2/22/14

3

Notes About Vectors	

•  Primitive Types and Vectors	

!Vector v = new Vector();!
!v.add(5); !

•  This (technically) shouldn’t work! Can’t use primitive data types with
vectors…they aren’t Objects!	

•  (But Java is now smart about some data types, and converts them
automatically for us -- called autoboxing)	

•  We used to have to “box” and “unbox” primitive data types:	

!Integer num = new Integer(5);!
!v.add(num);!
!…!
!Integer result = (Integer)v.get(0);!
!int res = result.intValue();!

•  Similar wrapper classes (Double, Boolean, etc) exist for all
primitives	

Vector Summary So Far	

•  Vectors: “extensible arrays” that
automatically manage adding elements,
removing elements, etc.	

1.  Must cast Objects to correct type when
removing from Vector	

2.  Use wrapper classes (with capital letters) for
primitive data types (use “Integers” not “ints”)	

3.  Define equals() method for Objects being stored
if contains(), indexOf(), etc. is needed	

Using Generic (or Parameterized)
Data Types	

•  What limitations are associated with casting Objects
as they are added and removed from Vectors?	

•  Errors cannot be detected by compiler	

•  Must rely on runtime errors	

•  Compiler complains (with weird warnings)	

•  Instead of casting Objects, Java supports using generic
or parameterized data types (Read Ch 4)	

•  Instead of: 	

Vector v = new Vector(); //Vector of Objects!
String word = (String)v.get(index); //Cast to String!

•  Say: 	

Vector<String> v = new Vector<String>(); //Vector of Strings!
String word = v.get(index); //no cast!	

(Look at WordFreq.java with gen)	

Implementing Vectors	

•  Vectors are really just arrays of Objects	

•  Key difference is that the number of elements

can grow and shrink dynamically	

•  How are they implemented in Java?	

•  What instance variables do we need?	

•  What methods? (start simple)	

•  Constructor(s): Vector(), Vector(size), !
!get(index), set(index, Obj), !
!add(Obj), add(index, Obj), remove(index),!

 isEmpty(), size() (we’ll finish some of these
next time!)	

