
2/19/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 5	

Feb 19, 2014	

Administrative Details	

•  Lab 2 is today	

•  We’ll go over design at the beginning of lab	

•  You may work with a partner	

Last Time	

•  Continued reviewing Java and arrays	

•  Pokerhand example	

•  I’m skipping the rest of PokerHand to save time…	

•  Code is posted and I posted extra notes/slides 	

Today’s Outline	

•  Quickly review Strings in Java (end of Java
refresher!)	

•  Learn about Assertions and pre/post
conditions	

•  Discuss Associations and Vectors	

•  We need to go quickly…we’ll slow down on

Friday!	

Quick Review: Strings in Java	

•  Useful methods (also check javadocs)	

•  indexOf(string); !
!indexOf(string, startIndex);!
•  substring(start, end); //[start,end)!
•  charAt(int index);!
•  equals(other);!
•  toLowerCase();!
•  toUpperCase();!
•  compareTo(string);!
•  length();!
•  startsWith(string);!

Using Strings	

•  Suppose we want to parse an XML listing of our

music library	

•  XML = eXtended Markup Language	

•  XML is used for many things	

•  CD info:	

! ! <CD>!
 <TITLE>Big Willie style</TITLE>!
 <ARTIST>Will Smith</ARTIST>!
 <COUNTRY>USA</COUNTRY>!
 <COMPANY>Columbia</COMPANY>!
 <YEAR>1997</YEAR>	

 </CD>!

•  How can we find and print just the titles?	

•  See CDTitles.java	

•  Redirecting System.in in Unix: java CDTitles < cds.xml	

2/19/14

2

Moving on…	

 Pre and Post Conditions	

•  Recall charAt(int index) in Java String class	

•  What are the pre-conditions for charAt?	

•  0 <= index < length()	

•  What are the post-conditions?	

•  Method returns char at position index in string	

•  We put pre and post conditions in comments above
most methods 	

!/* pre: 0 ≤ index < length!
 ! * post: returns char at position index!
 ! */!
 ! public char charAt(int index) { … }!

Pre and Post Conditions	

•  Pre and post conditions “form a contract”	

•  Post-condition is guaranteed if method is

called when pre-condition is true	

•  Examples:	

•  s.charAt(s.length() - 1): index < length, so valid	

•  s.charAt(s.length() + 1): index > length, not valid	

•  These conditions document requirements that
the program should satisfy	

Other Examples	

•  Other places pre and post conditions are
useful (see CardPrePost.java):	

 public class Card {!
//pre: TWO <= rank <= ACE!
//pre: CLUBS <= suit <= SPADES!
public Card(int rank, int suit) { … }!

•  Also:	

 //pre: other is a Card!
 //post: returns true if other has same rank and suit!
 public boolean equals (Object other) { … }!

Assert Class	

•  Pre and post condition comments are useful
as a programmer, but it would be really
helpful to know as soon as a pre-condition is
violated (and return an error)	

•  The Assert class (in structure5 package)
allows us to programmatically check for pre
and post conditions	

Assert Class	

public class Assert {!

!public static void pre(boolean test, String message);!

!public static void post(boolean test, String message);!

!public static void condition(boolean test, String message);!

!public static void fail(String message);!

}!

!

!

!

2/19/14

3

Card.java	

•  Let’s look at Card.java again (CardAssert.java)	

•  This time, we’ll use assertions to check for

pre-conditions	

•  Have to import structure5.* in bailey.jar	

•  Use instanceof to check Object other in
equals() method	

•  This allows Java to print useful error messages

when something is wrong	

General Rules about Assert	

1.  State pre/post conditions in comments	

2.  Check conditions in code using “Assert”	

3.  Fail in unexpected cases (such as the default

block of a switch statement)	

•  Any questions? 	

•  You should use Assertions in Lab 2	

Moving on…Dictionary Class	

•  Now we’re going to discuss our first general
data structure!	

•  What is a Dictionary? 	

•  Really just a map from word to definition…	

•  These mappings are called Associations	

•  Given word, lookup and return definition	

•  java Dictionary <word>	

•  Prints definition	

Other Associations	

•  Word → Definition	

•  Account number → Balance	

•  Student name → Grades	

•  Google:	

•  URL → page.html	

•  page.html → {a.html, b.html, …} (links in page)	

•  Word → {a.html, d.html, …} (pages with Word)	

•  In general: 	

•  Key → Value	

Association Class	

•  We want to capture the “key → value”
relationship in a general class that we can use
everywhere	

•  What type do we use for key and value
instance variables?	

•  Object!	

•  We can treat any thing as an Object since all
classes inherently extend Object class in Java…	

Association Class	

import structure5.*;!
class Association {!
!protected Object key;!
!protected Object value;!

!
!//pre: key != null!
!public Association (Object K, Object V) {!
! !Assert.pre (K!=null, “Null key”);!
! !key = K;!
! !value = V;!
!}!

!
!public Object getKey() {return key;}!
!public Object getValue() {return value;}!
!public Object setValue(Object V) {!
! !Object old = value;!
! !value = V; !
! !return old;!
!}!

}!

2/19/14

4

Dictionary Class	

•  Now that we have an Association class, let’s
implement Dictionary.java	

•  A Dictionary object is really just a collection
of Associations	

•  What should we use to store our
Associations?	

•  An array!	

Dictionary.java (version 1)	

protected Association words[] = new Association[5];!
public Dictionary() {!
!words[0] = new Association("perception", "Awareness of an

! object of thought");!
!words[1] = new Association("person", "An individual capable of

! moral agency");!
!words[2] = new Association("pessimism", "Belief that things

! generally happen for the worst");!
 words[3] = new Association("philosophy", "Literally, !

! love of wisdom.");!
 words[4] = new Association("premise", "A statement whose

! truth is used to infer that of others");!
}!
!
// post: returns the definition of word, or "" if not found.!
public String lookup(String word) {!
 for (int i = 0; i < words.length; i++) {!
 Association a = words[i];!
 if (a.getKey().equals(word)) {!
 // note cast to recover type from Object!
 return (String)a.getValue(); !
! ! }!

 } !
! return "";!

}!

Problems with Arrays	

•  Dictionary is a fixed size	

•  How do we support addWord?	

•  Possible solutions:	

•  Big array and keep a counter of current number

of words	

•  Error prone. What if we run out of space in array?	

•  Big array-like data structure that can dynamically
grow and manage itself	

Vectors	

•  Vectors are collections of Objects	

•  Methods include:	

•  add(Object o), remove(Object o)!
•  contains(Object o)!
•  indexOf(Object o)!
•  get(int index), set(int index, Object o)!
•  remove(int index)!
•  add(int index, Object o)!
•  size(), isEmpty()!

Dictionary.java (version 2)	

protected Vector defs;!
public Dictionary() {!
!defs = new Vector();!

}!
!
public void addWord(String word, String def) {!
!defs.add(new Association(word, def));!

}!
!
// post: returns the definition of word, or "" if not found.!
public String lookup(String word) {!
 for (int i = 0; i < defs.size(); i++) {!
 Association a = (Association)defs.get(i);!
 if (a.getKey().equals(word)) {!
 return (String)a.getValue(); !
 }!
 }!
 return "";!
}!

Dictionary.java (version 2)	

public static void main(String args[]) {!
!Dictionary dict = new Dictionary();!
!dict.addWord("perception", "Awareness of an object of !

!thought");!
!dict.addWord("person", "An individual capable of moral !

!agency");!
!dict.addWord("pessimism", "Belief that things generally !

!happen for the worst");!
!dict.addWord("philosophy", "Literally, love of ! !

!wisdom.");!

!dict.addWord("premise", "A statement whose truth is used to
!infer that of others");!

}!

