
5/16/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 36	

May 16, 2014	

Administrative Details	

•  Final exam - self scheduled	

•  You get 2.5 hours to complete it	

•  Covers everything, w/ strong emphasis on Ch 14-16	

•  BSTs, HashTables, Maps, Graphs	

•  NOTE: I will be out of town this weekend	

•  Otherwise I’ll be mostly around next week	

Last Time	

•  Wrapped up graphs	

•  Started discussing Maps	

Today’s Outline	

•  Finish discussing HashMaps/HashTables	

Recap: Hashing in a Nutshell	

•  Group objects into “bins”	

•  When searching for object, go directly to

appropriate bin	

•  If there are multiple objects in bin, then search

(linearly) for correct one	

•  Important Insight: This works best when
objects are evenly distributed among bins	

•  Must deal with collisions	

Recap: Linear Probing	

•  If a collision occurs at a given bin, just move forward (linearly)
until an empty slot is available	

•  Need a “placeholder” for removed values…	

//OVERSIMPLIFIED VERSION OF PUT!
public void put (K key, V val) {!
 int index = key.hashCode() % arraySize;!
 while (index < array.length && array[index]!=null &&!
 !array[index].getKey().equals(key)) {!
 index++;!
 }!

 array[index] = new Association(key, val);!
}!

5/16/14

2

Recap: Linear Probing	

•  If a collision occurs at a given bin, just move forward (linearly)
until an empty slot is available	

•  Need a “placeholder” for removed values…	

//OVERSIMPLIFIED VERSION OF GET!
public V get (K key) {!
 int index = key.hashCode() % arraySize;!
 while (index < array.length && array[index]!=null && !
 !array[index].getKey().equals(key)) {!
 index++;!
 }!

 if (index==array.length) return null;!
 return array[index];!
}!

Linear Probing	

•  Runtime	

•  put, get, remove	

•  O(1)	

•  …as long as the array isn’t too full!	

External Chaining	

•  Downsides of linear probing	

•  What if array is almost full?	

•  Linear probing is extremely difficult on almost-full

arrays	

•  How can we avoid this problem?	

•  Keep all values that hash to same bin in a

“collection”	

•  Usually a SLL	

•  External chaining “chains” objects with the same
hash value together 	

Example	

•  Recall our previous example	

•  Add algorithm	

•  Add data	

•  Add queue	

•  Now remove algorithm	

•  No need for placeholders!	

	

External Chaining	

•  Let’s look at put(key, val)…	

public V put(K key, V val) {!
 //locate returns SLL in the appropriate bin!
 SLL list = locate(key);!
 ComparableAssociation newA = !
 new ComparableAssociation(key, val);!
 ComparableAssociation oldA = list.remove(newA);!
 list.add(newA);!
 return oldA.getValue();!
}!

External Chaining	

•  Let’s look at put(key, val)…	

•  Runtime	

•  put, get, and remove	

•  O(l) (l is size of linked list at given bin)	

–  As long as table isn’t too full, this is almost O(1)	

5/16/14

3

Load Factor	

•  Need to keep track of how full the table is	

•  Why?	

•  What happens when array fills completely?	

•  Load factor is a measure of how full the hash
table is 	

•  LF = # elements/table size	

•  When LF reaches some threshold, need to
double size of array (typically threshold = 0.6)	

•  How?	

Doubling Array	

•  Cannot just copy values	

•  Why?	

•  Hash values may change (i.e., element “list”)	

•  Example	

•  key.hashCode() % 8 = 3;	

•  key.hashCode() % 16 = 11;	

•  Have to recompute all hash codes	

•  This is expensive!	

Good Hashing Functions	

•  Important point:	

•  All of this hinges on using “good” hash functions

that spread keys “evenly”	

•  Two properties of good hash functions:	

•  Fast to compute	

•  Uniformly distribute keys	

•  Almost always have to test “goodness”
empirically 	

Example Hash Functions	

•  What are some feasible hash functions for
Strings?	

•  First char ASCII value mapping	

•  0-255 only	

•  Not uniform (some letters more popular than others)	

•  Sum of ASCII characters	

•  Not uniform - lots of small words	

•  smile, limes, miles, slime are all the same	

Example Hash Functions	

•  String hash functions	

•  Weighted sum	

•  Small words get bigger codes	

•  Distributes keys better than non-weighted sum	

•  Let’s look at different weights…	

s.charAt(i)	
Σ
 n=s.length()	

	

	

i = 0	

Hash of all words in UNIX
spelling dictionary (997

buckets)	

5/16/14

4

s.charAt(i) * 2i	
Σ
n	

	

	

i = 0	

s.charAt(i) * 256i	
Σ
This looks pretty good, but 256i is big…	

n	

	

	

i = 0	

s.charAt(i) * 31i	
Σ
Java uses:	
n	

	

	

i = 0	

€

s.charAt(i) * 31(n− i−1)
i= 0

n

∑
put	
 get	
 space	

unsorted vector	
 O(n)	
 O(n)	
 O(n)	

unsorted list	
 O(n)	
 O(n)	
 O(n)	

ordered vector	
 O(n)	
 O(log n)	
 O(n)	

balanced BST	
 O(log n)	
 O(log n)	
 O(n)	

array indexed by key	
 O(1)	
 O(1)	
 O(key range)	

Dictionary Summary	

Course Evals – Wrap Up	

•  This semester we have explored structures to
represent data	

•  Started with simple arrays	

•  Ended with complicated graphs and hash tables	

•  We studied algorithms to manipulate and use these
data structures	

•  We studied ways to evaluate and visualize them	

•  Emphasized importance of abstraction, modular

design, correctness, and efficiency	

Topics Covered	

•  Vectors (and arrays)	

•  Complexity (big O)	

•  Recursion + Induction	

•  Searching 	

•  Sorting	

•  LinkedLists	

•  Stacks	

•  Queues 	

•  Iterators	

•  Comparables/Comparators	

•  OrderedStructures	

•  Binary Trees	

•  Priority Queues	

•  Heaps 	

•  Binary Search Trees	

•  Graphs	

•  Maps/Hashtables	

5/16/14

5

What’s Next?	

•  Data structures provides you with a complete tool
box to study the rest of Computer Science	

•  Programming Languages	

•  Artificial Intelligence	

•  Compilers	

•  Networks	

•  Distributed Systems	

•  Algorithms	

•  Operating Systems	

•  …	

•  Also applicable to many areas outside of CS	

Thanks!!	

•  Any questions?	

•  Thanks for a great semester!	

•  Have a great summer!	

•  Congrats seniors!	

