
5/14/14	

1	

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 35	

May 14, 2014	

Administrative Details	

•  Final exam - self scheduled	

•  You get 2.5 hours to complete it	

•  Covers everything, with strong emphasis on Ch 14-16
(BSTs, HashTables, Maps, Graphs)	

•  Study guide on handouts page	

•  Extra credit accepted through Tue, May 20 at 5pm	

•  You’ll get midterms and Lab 9 (Darwin) back in a

little while	

Last Time	

•  Discussed graph traversal algorithms (Ch 16)	

•  Depth first search	

•  Breadth first search	

•  Cycle detection	

•  Shortest path (Dijkstra’s algorithm)	

•  Any questions?	

Today’s Outline	

•  Continue learning about hash tables (finally)	

•  You should also read Ch 15 for more info	

Map Interface	

•  Methods for Map<K, V>	

•  int size() - returns number of entries in map	

•  boolean isEmpty() - true iff there are no entries	

•  boolean containsKey(K key) - true iff key exists in map	

•  boolean containsValue(V val) - true iff val exists at least

once in map	

•  V get(K key) - get value associated with key	

•  V put(K key, V val) - insert mapping from key to val,

returns value replaced (old value) or null	

•  V remove(K key) - remove mapping from key to val	

•  void clear() - remove all entries from map	

Map Interface	

•  Other methods for Map<K,V>:	

•  void putAll(Map<K,V> other) - puts all key-value pairs

from Map other in map	

•  Set<K> keySet() - return set of keys in map	

•  Set<Association<K,V>> entrySet() - return set of key-
value pairs from map	

•  Structure<V> valueSet() - return set of values	

•  boolean equals() - used to compare two maps	

•  int hashCode() - returns hash code associated with map
(stay tuned…)	

5/14/14	

2	

public class Dictionary {!
!
 public static void main(String args[]) {!
 Map<String, String> dict = new Hashtable<String, String>();!
 …!

! dict.put(word, def);!
 …!
 System.out.println("Def: "+dict.get(word));!
 }!
 !
}!

Dictionary.java	
 Simple Map Implementation	

•  A simple implementation of the Map interface
is the MapList class	

•  Uses a SinglyLinkedList of Associations as
underlying data structure	

•  How would we implement put(K key, V val)?	

MapList.java	

public class MapList<K, V> implements Map<K, V>{!
!
 //instance variable!
 SinglyLinkedList<Association<K,V>> data; !
 !
 public V put (K key, V value) {!

!Association<K,V> temp = new Association<K, V> (key, value);!
!Association<K,V> result = data.remove(temp);!
!!
!data.addFirst(temp);!
!if (result == null) return null;!
!else return result.getValue();!

 }!
}!

Simple Map Implementation	

•  A simple implementation of the Map interface
is the MapList class	

•  Uses a SinglyLinkedList of Associations as
underlying data structure	

•  How would we implement put(K key, V val)?	

•  What is the running time of:	

•  containsKey(K key)?	

•  containsValue(V val)?	

•  Bottom line: not O(1)!	

Search/Locate Revisited	

•  How long does it take to search for objects in
Vectors and Lists?	

•  O(n) on average	

•  How about in BSTs?	

•  O(log n)	

•  Can this be improved?	

•  With hash tables, YES!	

•  Can locate objects in roughly O(1) time!	

Hashing in a Nutshell	

•  Group objects into “bins”	

•  When searching for object, go directly to

appropriate bin	

•  If there are multiple objects in bin, then search

(linearly) for correct one	

•  Important Insight: This works best when
objects are evenly distributed among bins	

5/14/14	

3	

Implementing a HashTable	

•  How can we represent bins?	

•  Slots in array (or Vector, but arrays are faster)	

•  Initial size of array is a fixed-length prime number	

•  How do we find a bin number?	

•  We use a hash function that converts keys into

integers 	

•  In Java, we can use the hashCode() method that all

Objects have	

Implementing HashTable	

•  How do we add Associations to the array?	

•  Can get complicated if collisions occur	

•  Two approaches	

•  Open addressing (using linear probing)	

•  External chaining	

Linear Probing	

•  If a collision occurs at a given bin, just move forward (linearly)
until an empty slot is available	

•  Specify trivial hash function	

•  Initial array size = 8	

•  Add “algorithm” to hash table	

•  Add “data”	

•  Add “queue”	

•  Let’s implement put(key, val) and get(key)…	

•  What happens when we remove “algorithm”, and then
lookup “queue”?	

•  Need a “placeholder” for removed values…	

Linear Probing	

•  Runtime	

•  put	

•  O(1)	

•  get	

•  O(1)	

•  remove	

•  O(1)	

