
5/2/14 

1 

CSCI 136���
Data Structures &���

Advanced Programming	



Jeannie Albrecht	


Lecture 30	


May 2, 2014	



Administrative Details	



•  Darwin lab	


•  Final lab + creature due Monday at noon	


•  Any questions/problems?	



•  How do you infect another creature?	


•  Make sure you don’t create new creatures…just 

change the species of an existing one	



Last Time (Monday)	



•  Continued talking about BSTs	


•  Learned how to add elements to a BST	



Today’s Outline	



•  Wrap up binary search trees	


•  Maybe start talking about Graphs (Ch 16)	


•  Learn a bit more about graphs during next lab	



Recap: locate	


protected BT<E> locate(BT<E> top, E value) {!
  // pre: top and value are non-null !
  // post: returns “highest” node with the desired value, !
  //       or node to which value should be added  !
  E topValue = top.value(); !
  BT<E> child; !
  // found at top: done !
  if (topValue.equals(value)) return top; !
  // look left if less-than, right if greater-than !
  if (ordering.compare(topValue,value) < 0) { !
      child = top.right(); !
  } else { !
      child = top.left(); !
  } !
  // if no child there: not in tree, return this node, !
  if (child.isEmpty()) { return top; } !
  // else keep searching !
 else { return locate(child, value); } !
} !

Recap: contains	


 public boolean contains (E value) {!
!if (root.isEmpty()) return false;!
!!
!BinaryTree<E> node = locate(root, value);!
!return node.value().equals(value);!

 }!
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Recap: add	


public void add(E value) {!
  BT<E> newNode = new BT<E>(value); !
  if (root.isEmpty()) { root = newNode; } !
  else { !
   BT<E> node = locate(root,value); !
   E nodeValue = node.value(); !
    // node is either successor or predecessor of newNode!
    if (ordering.compare(nodeValue,value) < 0) {   !
        //locate returned predecessor; add as right child   !
        node.setRight(newNode); !
    } else {  //locate returned successor!
      if (!node.left().isEmpty()) { !
        // duplicate: if value is in tree, we insert before it  !
        predecessor(node).setRight(newNode); !
      } else { !
        node.setLeft(newNode); !
      } !
    } !
  } !
  count++; !
} !

Removal	



•  Removing the root is the hardest	


•  Let’s figure that out first	


•  If we figure out how to remove the root, we can 

remove any element in BST in same way (why?)	



•  We need to implement:	


•  public E remove(E item)!
•  protected BT<E> removeTop(BT<E> top)!

Food for thought…	



•  Can we design a binary search tree that is 
always balanced?	



•  Yes!	


•  AVL trees	


•  Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper 
about AVL trees in 1962 called "An algorithm for 
the organization of information"	
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• The balance factor of a node is the height of its right 
subtree minus the height of its left subtree.  A node 
with balance factor 1, 0, or -1 is considered balanced. 	



• A node with any other balance factor is considered 
unbalanced and requires rebalancing the tree. 	
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Single Rotation	



Unbalanced trees can be rotated to achieve balance.	
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Moving on…	



•  You won’t be tested on AVL trees	



•  Any questions on BSTs before we move on to 
graphs?	



Introduction to Graphs	



•  Types of data structures	


•  Basic - Lists/Vectors (no ordering relation)	


•  Linear - ordered by insertion	


•  Ordered - value ordering	


•  Tree - hierarchical ordering	


•  BST - value ordering (in a hierarchical fashion)	



•  Next up: Graphs	


•  The most general way to describe relationships 

between data	



Graphs	



•  Definition	


•  A graph is a collection of vertices (nodes) and 

edges connecting them	



•  Examples?	
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Nodes = cities; Edges = lines connecting cities	
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Note: Structure of graph matters, not actual placement of nodes	



Types of Graphs	



•  Undirected	


•  All edges are bi-directional	



•  Directed	


•  Edges have a source and destination	



SF	

 Denver	



Dallas	



SF	

 Denver	



Dallas	





5/2/14 

4 

Seattle	



Paths	


•  A path is a sequence of edges between two nodes	



•  Questions:	


•  What is the shortest path from SF to NY?	



•  What is the shortest cycle from SF to SF that goes through 
Atlanta and Chicago? 	
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Connectedness	



•  Nodes U and V are connected if there is an 
edge between U and V	



•  A connected component is a set S where there 
is a path between every pair of vertices in S	


•  A fully connected component is a set S where there 

is an edge between every pair of vertices in S	
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What’s reachable from TCL?	



Graph Applications	



•  Connectedness in the real world	


•  Flights, campus, networks, etc.	


•  Useful for finding shortest number of steps/hops	
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UTAH	



CMU	



NRL	



HARV	



MIT	



BBN	



Internet (~1972)	
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Internet (~1998)	

 Graph Applications	



•  Connectedness in the real world	


•  Flights, campus, networks, etc.	


•  Useful for finding shortest number of steps	



•  Word “changlings”	


•  Change in degree, paths, size, etc.	
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Graph Applications	



•  Connectedness in the real world	


•  Flights, campus, networks, etc.	


•  Useful for finding shortest number of steps	



•  Word “changlings”	


•  Change in degree, paths, size, etc.	



•  Schedules	


•  In edges/out edges indicate prerequisite 

relationships (why no cycles?)	



Java	



Data Structures	



Organization	



Discrete Math	

 Theory	



Algorithms	



Programming Languages	



Operating Systems	



AI	



Compilers	



Graphics	



Linear Algebra	



Labeled Edges	



•  Not all edges are the same “weight” 	


•  Edges can carry extra info 	



•  Weight = the cost of traversing that edge	


•  Cost may be a function of time, distance, price to 

pay, etc.	



•  May lead to different solutions to previously 
answered questions	


•  What is shortest path between SF and NY given 

edge weights?	
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