
5/2/14 

1 

CSCI 136���
Data Structures &���

Advanced Programming	


Jeannie Albrecht	

Lecture 30	

May 2, 2014	


Administrative Details	


•  Darwin lab	

•  Final lab + creature due Monday at noon	

•  Any questions/problems?	


•  How do you infect another creature?	

•  Make sure you don’t create new creatures…just 

change the species of an existing one	


Last Time (Monday)	


•  Continued talking about BSTs	

•  Learned how to add elements to a BST	


Today’s Outline	


•  Wrap up binary search trees	

•  Maybe start talking about Graphs (Ch 16)	

•  Learn a bit more about graphs during next lab	


Recap: locate	

protected BT<E> locate(BT<E> top, E value) {!
  // pre: top and value are non-null !
  // post: returns “highest” node with the desired value, !
  //       or node to which value should be added  !
  E topValue = top.value(); !
  BT<E> child; !
  // found at top: done !
  if (topValue.equals(value)) return top; !
  // look left if less-than, right if greater-than !
  if (ordering.compare(topValue,value) < 0) { !
      child = top.right(); !
  } else { !
      child = top.left(); !
  } !
  // if no child there: not in tree, return this node, !
  if (child.isEmpty()) { return top; } !
  // else keep searching !
 else { return locate(child, value); } !
} !

Recap: contains	

 public boolean contains (E value) {!
!if (root.isEmpty()) return false;!
!!
!BinaryTree<E> node = locate(root, value);!
!return node.value().equals(value);!

 }!



5/2/14 

2 

Recap: add	

public void add(E value) {!
  BT<E> newNode = new BT<E>(value); !
  if (root.isEmpty()) { root = newNode; } !
  else { !
   BT<E> node = locate(root,value); !
   E nodeValue = node.value(); !
    // node is either successor or predecessor of newNode!
    if (ordering.compare(nodeValue,value) < 0) {   !
        //locate returned predecessor; add as right child   !
        node.setRight(newNode); !
    } else {  //locate returned successor!
      if (!node.left().isEmpty()) { !
        // duplicate: if value is in tree, we insert before it  !
        predecessor(node).setRight(newNode); !
      } else { !
        node.setLeft(newNode); !
      } !
    } !
  } !
  count++; !
} !

Removal	


•  Removing the root is the hardest	

•  Let’s figure that out first	

•  If we figure out how to remove the root, we can 

remove any element in BST in same way (why?)	


•  We need to implement:	

•  public E remove(E item)!
•  protected BT<E> removeTop(BT<E> top)!

Food for thought…	


•  Can we design a binary search tree that is 
always balanced?	


•  Yes!	

•  AVL trees	

•  Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper 
about AVL trees in 1962 called "An algorithm for 
the organization of information"	


A	


B	


C	


+2	


+1	


0	


• The balance factor of a node is the height of its right 
subtree minus the height of its left subtree.  A node 
with balance factor 1, 0, or -1 is considered balanced. 	


• A node with any other balance factor is considered 
unbalanced and requires rebalancing the tree. 	


A	


B	


C	


+2	


+1	


0	

A	


B	


C	


0	


0	
0	


Single Rotation	


Unbalanced trees can be rotated to achieve balance.	


B	


E	


F	


-2	


0	
1	


A	
 D	

-1	
0	


C	

0	


D	


E	


F	


-2	


0	
-2	


B	

0	


A	

0	


C	

0	


B	


D	


E	


0	


+1	
0	


A	

0	


F	

0	


C	

0	


Double Rotation	




5/2/14 

3 

Moving on…	


•  You won’t be tested on AVL trees	


•  Any questions on BSTs before we move on to 
graphs?	


Introduction to Graphs	


•  Types of data structures	

•  Basic - Lists/Vectors (no ordering relation)	

•  Linear - ordered by insertion	

•  Ordered - value ordering	

•  Tree - hierarchical ordering	

•  BST - value ordering (in a hierarchical fashion)	


•  Next up: Graphs	

•  The most general way to describe relationships 

between data	


Graphs	


•  Definition	

•  A graph is a collection of vertices (nodes) and 

edges connecting them	


•  Examples?	


Seattle	


Portland	


SF	


LA	


Denver	


Dallas	


Chicago	


NY	


Boston	


Atlanta	


Nodes = cities; Edges = lines connecting cities	


Seattle	
Portland	


SF	


LA	


Denver	


Dallas	


Chicago	


NY	


Boston	


Atlanta	


Note: Structure of graph matters, not actual placement of nodes	


Types of Graphs	


•  Undirected	

•  All edges are bi-directional	


•  Directed	

•  Edges have a source and destination	


SF	
 Denver	


Dallas	


SF	
 Denver	


Dallas	




5/2/14 

4 

Seattle	


Paths	

•  A path is a sequence of edges between two nodes	


•  Questions:	

•  What is the shortest path from SF to NY?	


•  What is the shortest cycle from SF to SF that goes through 
Atlanta and Chicago? 	


Portland	


Dallas	
 Atlanta	


SF	


LA	


Denver	
 Chicago	


NY	


Boston	


Connectedness	


•  Nodes U and V are connected if there is an 
edge between U and V	


•  A connected component is a set S where there 
is a path between every pair of vertices in S	

•  A fully connected component is a set S where there 

is an edge between every pair of vertices in S	


Eph Pond	
Field House	


Poker Flats	


Mission	


Chapin	


Paresky	


Faculty Club	


Health Services	


Bronfman	


Griffin	


Spencer	


TCL	


West	


Jessup	


Hopkins	


Track	


Art	


Eph Pond	
Field House	


Poker Flats	


Mission	


Chapin	


Paresky	


Faculty Club	


Health Services	


Bronfman	


Griffin	


Spencer	


TCL	


West	


Jessup	


Hopkins	


Track	


Art	


What’s reachable from TCL?	


Graph Applications	


•  Connectedness in the real world	

•  Flights, campus, networks, etc.	

•  Useful for finding shortest number of steps/hops	


SRI	


STAN	


UCLA	


RAND	


UTAH	


CMU	


NRL	


HARV	


MIT	


BBN	


Internet (~1972)	




5/2/14 

5 

Internet (~1998)	
 Graph Applications	


•  Connectedness in the real world	

•  Flights, campus, networks, etc.	

•  Useful for finding shortest number of steps	


•  Word “changlings”	

•  Change in degree, paths, size, etc.	


WORD	


CORD	


WARD	


WOAD	


WOLD	


WOOD	


LORD	
FORD	


WORM	


WORE	
 WORK	


WORN	
 WORT	


Graph Applications	


•  Connectedness in the real world	

•  Flights, campus, networks, etc.	

•  Useful for finding shortest number of steps	


•  Word “changlings”	

•  Change in degree, paths, size, etc.	


•  Schedules	

•  In edges/out edges indicate prerequisite 

relationships (why no cycles?)	


Java	


Data Structures	


Organization	


Discrete Math	
 Theory	


Algorithms	


Programming Languages	


Operating Systems	


AI	


Compilers	


Graphics	


Linear Algebra	


Labeled Edges	


•  Not all edges are the same “weight” 	

•  Edges can carry extra info 	


•  Weight = the cost of traversing that edge	

•  Cost may be a function of time, distance, price to 

pay, etc.	


•  May lead to different solutions to previously 
answered questions	

•  What is shortest path between SF and NY given 

edge weights?	




5/2/14 

6 

Seattle	


Portland	


SF	


LA	


Denver	


Dallas	


Chicago	


NY	


Boston	


Atlanta	


2849	


907	


599	


650	


725	


130	


550	


954	


1468	


1240	


191	


756	


Seattle	


Portland	


SF	


LA	


Denver	


Dallas	


Chicago	


NY	


Boston	


Atlanta	


2849	


907	


599	


650	


725	


130	


550	


954	


1468	


1240	


191	


756	



