CSCI 136
Data Structures &
Advanced Programming

Jeannie Albrecht
Lecture 30
May 2, 2014

Administrative Details

* Darwin lab
* Final lab + creature due Monday at noon
* Any questions/problems?

* How do you infect another creature?

* Make sure you don’t create new creatures...just
change the species of an existing one

Last Time (Monday)

 Continued talking about BSTs
e Learned how to add elements to a BST

Today’s Outline

* Wrap up binary search trees
* Maybe start talking about Graphs (Ch 16)

* Learn a bit more about graphs during next lab

Recap: locate

protected BT<E> locate(BT<E> top, E value) {
// pre: top and value are non-null
// post: returns “highest” node with the desired value,
/7 or node to which value should be added
E topValue = top.value();
BT<E> child;
// found at top: done
if (topValue.equals(value)) return top;
// look left if less-than, right if greater-than
if (ordering.compare(topValue,value) < 0) {
child = top.right();
} else {
child = top.left();
}
// if no child there: not in tree, return this node,
if (child.isEmpty()) { return top; }
// else keep searching
else { return locate(child, value); }

}

Recap: contains

public boolean contains (E value) {
if (root.isEmpty()) return false;

BinaryTree<E> node = locate(root, value);
return node.value().equals(value);

}

5/2/14

Recap: add

public void add(E value) {
BT<E> newNode = new BT<E>(value);
if (root.isEmpty()) { root = newNode; }
else {
BT<E> node = locate(root,value);
E nodeValue = node.value();
// node is either successor or predecessor of newNode
if (ordering.compare(nodeValue,value) < 0) {
//locate returned predecessor; add as right child
node.setRight (newNode) ;
} else { //locate returned successor
if (!node.left().isEmpty()) {
// duplicate: if value is in tree, we insert before it
predecessor (node) .setRight (newNode) ;
} else {
node.setLeft (newNode) ;
}
}
}
count++;

}

Removal

* Removing the root is the hardest

e Let’s figure that out first

* If we figure out how to remove the root, we can
remove any element in BST in same way (why?)

* We need to implement:
* public E remove(E item)
* protected BT<E> removeTop(BT<E> top)

5/2/14

Food for thought...

* Can we design a binary search tree that is
always balanced?

* Yes!
e AVL trees

* Named after its two inventors, G.M. Adelson-
Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

* The balance factor of a node is the height of its right
subtree minus the height of its left subtree. A node
with balance factor 1,0, or -1 is considered balanced.

* A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

Single Rotation

+2

A
AN

0

0
B+| > { \ 0
N A C

C

Unbalanced trees can be rotated to achieve balance.

Double Rotation

e’ () e’ 0 D’
/|\0|:>-/2\°|:> {\H
B F D F B E
4N\ / /N, N
A D B A C
0 {\ 0
C A C

Moving on...

* You won’t be tested on AVL trees

* Any questions on BSTs before we move on to
graphs?

Introduction to Graphs

* Types of data structures

* Basic - Lists/Vectors (no ordering relation)

* Linear - ordered by insertion

* Ordered - value ordering

* Tree - hierarchical ordering

* BST - value ordering (in a hierarchical fashion)
* Next up: Graphs

* The most general way to describe relationships
between data

Graphs

¢ Definition

* A graph is a collection of vertices (nodes) and
edges connecting them

* Examples?

Nodes = cities; Edges = lines connecting cities

Portland Seattle Boston

Denver Chicago

SF

NY

LA
Dallas Atlanta

Note: Structure of graph matters, not actual placement of nodes

Types of Graphs

e Undirected
* All edges are bi-directional

SF Denver

Dallas
* Directed
* Edges have a source and destination

SF Denver

Dallas

5/2/14

Paths

* A path is a sequence of edges between two nodes

Portland Seattle Bagston
Denver Chicago
SF
NY
LA Dallas Atianta

¢ Questions:
* What is the shortest path from SF to NY?

* What is the shortest cycle from SF to SF that goes through
Atlanta and Chicago?

Connectedness

* Nodes U and V are connected if there is an
edge between U and V

* A connected component is a set S where there
is a path between every pair of vertices in S

* A fully connected component is a set S where there
is an edge between every pair of vertices in S

| Field House
% Poker Flats,

Mission

| . Chapin |
Paresky Griffin
et 1L Facuity Club S

=) 5
| ¥ Bronfman Geiay

What's reachable from TCL?

[C———— po— —

| Field House
% Poker Flats.

Mission

I . @ Chapin| I
24 Paresky Griffin
e UL Faculey Club S | West:

| 2 Brohfman Seepe

Health Services " Track

(e e A e QAU A IR

Graph Applications

* Connectedness in the real world
* Flights, campus, networks, etc.
e Useful for finding shortest number of steps/hops

Internet (~1972)

BBN
CMU

- ‘ MIT

STAN HARV

SRI

UCLA NRL

RAND

5/2/14

Internet (~1998)

Graph Applications

e Connectedness in the real world

* Flights, campus, networks, etc.

* Useful for finding shortest number of steps
* Word “changlings”

* Change in degree, paths, size, etc.

Graph Applications

* Connectedness in the real world

* Flights, campus, networks, etc.

* Useful for finding shortest number of steps
* Word “changlings”

* Change in degree, paths, size, etc.
* Schedules

* In edges/out edges indicate prerequisite
relationships (why no cycles?)

5/2/14

Java

/ Graphics

Al

Linear Algebra

Algorithms

Compilers

Discrete Math Theory

Data Structures .
Programming Languages

Operating Systems

Organization /

Labeled Edges

* Not all edges are the same “weight”
* Edges can carry extra info
* Weight = the cost of traversing that edge
* Cost may be a function of time, distance, price to
pay, etc.
* May lead to different solutions to previously
answered questions

* What is shortest path between SF and NY given
edge weights?

5/2/14

