
5/2/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 30	

May 2, 2014	

Administrative Details	

•  Darwin lab	

•  Final lab + creature due Monday at noon	

•  Any questions/problems?	

•  How do you infect another creature?	

•  Make sure you don’t create new creatures…just

change the species of an existing one	

Last Time (Monday)	

•  Continued talking about BSTs	

•  Learned how to add elements to a BST	

Today’s Outline	

•  Wrap up binary search trees	

•  Maybe start talking about Graphs (Ch 16)	

•  Learn a bit more about graphs during next lab	

Recap: locate	

protected BT<E> locate(BT<E> top, E value) {!
 // pre: top and value are non-null !
 // post: returns “highest” node with the desired value, !
 // or node to which value should be added !
 E topValue = top.value(); !
 BT<E> child; !
 // found at top: done !
 if (topValue.equals(value)) return top; !
 // look left if less-than, right if greater-than !
 if (ordering.compare(topValue,value) < 0) { !
 child = top.right(); !
 } else { !
 child = top.left(); !
 } !
 // if no child there: not in tree, return this node, !
 if (child.isEmpty()) { return top; } !
 // else keep searching !
 else { return locate(child, value); } !
} !

Recap: contains	

 public boolean contains (E value) {!
!if (root.isEmpty()) return false;!
!!
!BinaryTree<E> node = locate(root, value);!
!return node.value().equals(value);!

 }!

5/2/14

2

Recap: add	

public void add(E value) {!
 BT<E> newNode = new BT<E>(value); !
 if (root.isEmpty()) { root = newNode; } !
 else { !
 BT<E> node = locate(root,value); !
 E nodeValue = node.value(); !
 // node is either successor or predecessor of newNode!
 if (ordering.compare(nodeValue,value) < 0) { !
 //locate returned predecessor; add as right child !
 node.setRight(newNode); !
 } else { //locate returned successor!
 if (!node.left().isEmpty()) { !
 // duplicate: if value is in tree, we insert before it !
 predecessor(node).setRight(newNode); !
 } else { !
 node.setLeft(newNode); !
 } !
 } !
 } !
 count++; !
} !

Removal	

•  Removing the root is the hardest	

•  Let’s figure that out first	

•  If we figure out how to remove the root, we can

remove any element in BST in same way (why?)	

•  We need to implement:	

•  public E remove(E item)!
•  protected BT<E> removeTop(BT<E> top)!

Food for thought…	

•  Can we design a binary search tree that is
always balanced?	

•  Yes!	

•  AVL trees	

•  Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"	

A	

B	

C	

+2	

+1	

0	

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree. A node
with balance factor 1, 0, or -1 is considered balanced. 	

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree. 	

A	

B	

C	

+2	

+1	

0	

A	

B	

C	

0	

0	

0	

Single Rotation	

Unbalanced trees can be rotated to achieve balance.	

B	

E	

F	

-2	

0	

1	

A	

 D	

-1	

0	

C	

0	

D	

E	

F	

-2	

0	

-2	

B	

0	

A	

0	

C	

0	

B	

D	

E	

0	

+1	

0	

A	

0	

F	

0	

C	

0	

Double Rotation	

5/2/14

3

Moving on…	

•  You won’t be tested on AVL trees	

•  Any questions on BSTs before we move on to
graphs?	

Introduction to Graphs	

•  Types of data structures	

•  Basic - Lists/Vectors (no ordering relation)	

•  Linear - ordered by insertion	

•  Ordered - value ordering	

•  Tree - hierarchical ordering	

•  BST - value ordering (in a hierarchical fashion)	

•  Next up: Graphs	

•  The most general way to describe relationships

between data	

Graphs	

•  Definition	

•  A graph is a collection of vertices (nodes) and

edges connecting them	

•  Examples?	

Seattle	

Portland	

SF	

LA	

Denver	

Dallas	

Chicago	

NY	

Boston	

Atlanta	

Nodes = cities; Edges = lines connecting cities	

Seattle	

Portland	

SF	

LA	

Denver	

Dallas	

Chicago	

NY	

Boston	

Atlanta	

Note: Structure of graph matters, not actual placement of nodes	

Types of Graphs	

•  Undirected	

•  All edges are bi-directional	

•  Directed	

•  Edges have a source and destination	

SF	

 Denver	

Dallas	

SF	

 Denver	

Dallas	

5/2/14

4

Seattle	

Paths	

•  A path is a sequence of edges between two nodes	

•  Questions:	

•  What is the shortest path from SF to NY?	

•  What is the shortest cycle from SF to SF that goes through
Atlanta and Chicago? 	

Portland	

Dallas	

 Atlanta	

SF	

LA	

Denver	

 Chicago	

NY	

Boston	

Connectedness	

•  Nodes U and V are connected if there is an
edge between U and V	

•  A connected component is a set S where there
is a path between every pair of vertices in S	

•  A fully connected component is a set S where there

is an edge between every pair of vertices in S	

Eph Pond	

Field House	

Poker Flats	

Mission	

Chapin	

Paresky	

Faculty Club	

Health Services	

Bronfman	

Griffin	

Spencer	

TCL	

West	

Jessup	

Hopkins	

Track	

Art	

Eph Pond	

Field House	

Poker Flats	

Mission	

Chapin	

Paresky	

Faculty Club	

Health Services	

Bronfman	

Griffin	

Spencer	

TCL	

West	

Jessup	

Hopkins	

Track	

Art	

What’s reachable from TCL?	

Graph Applications	

•  Connectedness in the real world	

•  Flights, campus, networks, etc.	

•  Useful for finding shortest number of steps/hops	

SRI	

STAN	

UCLA	

RAND	

UTAH	

CMU	

NRL	

HARV	

MIT	

BBN	

Internet (~1972)	

5/2/14

5

Internet (~1998)	

 Graph Applications	

•  Connectedness in the real world	

•  Flights, campus, networks, etc.	

•  Useful for finding shortest number of steps	

•  Word “changlings”	

•  Change in degree, paths, size, etc.	

WORD	

CORD	

WARD	

WOAD	

WOLD	

WOOD	

LORD	

FORD	

WORM	

WORE	

 WORK	

WORN	

 WORT	

Graph Applications	

•  Connectedness in the real world	

•  Flights, campus, networks, etc.	

•  Useful for finding shortest number of steps	

•  Word “changlings”	

•  Change in degree, paths, size, etc.	

•  Schedules	

•  In edges/out edges indicate prerequisite

relationships (why no cycles?)	

Java	

Data Structures	

Organization	

Discrete Math	

 Theory	

Algorithms	

Programming Languages	

Operating Systems	

AI	

Compilers	

Graphics	

Linear Algebra	

Labeled Edges	

•  Not all edges are the same “weight” 	

•  Edges can carry extra info 	

•  Weight = the cost of traversing that edge	

•  Cost may be a function of time, distance, price to

pay, etc.	

•  May lead to different solutions to previously
answered questions	

•  What is shortest path between SF and NY given

edge weights?	

5/2/14

6

Seattle	

Portland	

SF	

LA	

Denver	

Dallas	

Chicago	

NY	

Boston	

Atlanta	

2849	

907	

599	

650	

725	

130	

550	

954	

1468	

1240	

191	

756	

Seattle	

Portland	

SF	

LA	

Denver	

Dallas	

Chicago	

NY	

Boston	

Atlanta	

2849	

907	

599	

650	

725	

130	

550	

954	

1468	

1240	

191	

756	

