
2/12/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 3	

Feb 12, 2014	

Administrative Details	

•  Lab 1 design doc “due” at beginning of lab	

•  Several implementation options	

•  I recommend making an array of positions rather than
trying to represent the board with the array	

•  coins[0] = 1 means first coin is in space 1	

•  Lab today in TCL 217a (216 is available, too)	

•  Lab is due next Monday at noon	

•  Submit via turnin (details are in the handout)	

•  If you want to configure your laptop (PC or Mac) to
work on labs, bring laptop to lab or come see me	

2	

Last Time	

•  Reviewed command line arguments and use of

Scanner for reading input from stdin (System.in)	

•  Object oriented programming	

•  Objects model physical items, concepts, processing	

•  Objects have properties and capabilities	

3	

Today’s Outline	

•  Continue Java refresher	

•  Discuss interfaces, classes, and inheritance	

•  Learn about toString() and equals()	

4	

5	

Implementing Cards	

•  Think before we code! 	

•  Start general.	

•  Build an interface that advertises all public features

of a card	

•  Not an implementation (define methods, but

don’t include code)	

•  Then get specific.	

•  Build specific implementation of a card using our

general card interface 	

(Random) Notes about Interfaces	

•  Interface methods are always public	

•  Java does not allow non-public methods in interfaces	

•  Interface instance variables are always static final	

•  static variables are shared across instances	

•  final variables never change	

•  Most classes contain constructors; interfaces do not!	

•  Can create interface objects (just like class objects)	

6	

2/12/14

2

7	

Start General: CardInterface	

•  What data do we have to represent?	

•  Properties of cards	

•  How can we represent these properties?	

•  What methods do we need?	

•  Capabilities of cards 	

•  Do we need accessor and mutator methods?	

* 8	

Get Specific: Card	

•  Now suppose we want to build a specific card object	

•  We want to use the properties/capabilities defined in

our interface	

•  That is, we want to implement the interface	

 public class Card implements CardInterface {!
 . . . !

 }!

•  Note: Classes do not need main methods (although
they often contain them)	

•  Main method just tells the JRE where to “start” 	

•  See CardMain.java	

*

PokerHand	

•  Now that we have implemented CardInterface
and Card, how would we implement
PokerHand?	

•  What data structures do we need?	

•  We need a way to store 5 cards…	

•  Can use an array of Card objects!	

9	

Array Review	

•  Syntax for 1-D array:	

	

int hand[] = new int[5];	

•  Syntax for 2-D array:	

	

int hand[][] = new int[10][15];!
•  Determine size of array?	

	

hand.length; //not .length()!!!

10	

Class Specialization	

•  We now know that classes can implement one
or more interfaces	

•  Classes can also extend other classes	

•  Inherit fields and method bodies	

•  Note: implements does not do this!!!!!!!	

•  Interfaces can extend other interfaces	

•  By extending other classes/interfaces, we can
create specialized classes	

11	

 12	

Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
 //can use swim() in Fish without implementing it!
 //or can optionally override using a specialized swim()!
 public void swim() { … }!
!
}	

•  What does the following code do?	

Fish fish = new Shark();!
fish.swim();!
!

•  What are the benefits of specialization?!

2/12/14

3

13	

Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
 //can use swim() in Fish without implementing it!
 //or can optionally override using a specialized swim()!
 public void swim() { … }!
!
}	

•  What does the following code do?	

Fish fish = new Shark();!
fish.swim(); This calls Shark.swim()	

!

•  What are the benefits of specialization?!
•  Code reuse and extensibility	

Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
 //can use swim() in Fish without implementing it!
 //or can optionally override using a specialized swim()!
 public void swim() { … }!
 public void attack() { … }!
}	

•  What does the following code do?	

Fish fish = new Shark();!
fish.swim();!
fish.eat();!

•  Does this work?	

fish.attack();	

14	

Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
 //can use swim() in Fish without implementing it!
 //or can optionally override using a specialized swim()!
 public void swim() { … }!
 public void attack() { … }!
}	

•  What does the following code do?	

Fish fish = new Shark();!
fish.swim();!
fish.eat(); Calls Fish.eat()!

•  Does this work?	

fish.attack(); No, because attack() is not defined in Fish.	

15	

(See additional examples in FishMain.java)	

