
2/12/14 

1 

CSCI 136���
Data Structures &���

Advanced Programming	


Jeannie Albrecht	

Lecture 3	


Feb 12, 2014	


Administrative Details	


•  Lab 1 design doc “due” at beginning of lab	

•  Several implementation options	


•  I recommend making an array of positions rather than 
trying to represent the board with the array	


•  coins[0] = 1 means first coin is in space 1	


•  Lab today in TCL 217a (216 is available, too)	

•  Lab is due next Monday at noon	


•  Submit via turnin (details are in the handout)	


•  If you want to configure your laptop (PC or Mac) to 
work on labs, bring laptop to lab or come see me	


2	


Last Time	

•  Reviewed command line arguments and use of 

Scanner for reading input from stdin (System.in)	


•  Object oriented programming	

•  Objects model physical items, concepts, processing	


•  Objects have properties and capabilities	


3	


Today’s Outline	


•  Continue Java refresher	


•  Discuss interfaces, classes, and inheritance	


•  Learn about toString() and equals()	


4	


5	


Implementing Cards	


•  Think before we code! 	

•  Start general.	

•  Build an interface that advertises all public features 

of a card	

•  Not an implementation (define methods, but 

don’t include code)	


•  Then get specific.	

•  Build specific implementation of a card using our 

general card interface 	


(Random) Notes about Interfaces	


•  Interface methods are always public	

•  Java does not allow non-public methods in interfaces	


•  Interface instance variables are always static final	

•  static variables are shared across instances	


•  final variables never change	


•  Most classes contain constructors; interfaces do not!	

•  Can create interface objects (just like class objects)	


6	




2/12/14 

2 

7	


Start General: CardInterface	


•  What data do we have to represent?	

•  Properties of cards	

•  How can we represent these properties?	


•  What methods do we need?	

•  Capabilities of cards 	

•  Do we need accessor and mutator methods?	


* 8	


Get Specific: Card	


•  Now suppose we want to build a specific card object	

•  We want to use the properties/capabilities defined in 

our interface	

•  That is, we want to implement the interface	


    public class Card implements CardInterface {!
   . . . !

   }!

•  Note: Classes do not need main methods (although 
they often contain them)	

•  Main method just tells the JRE where to “start” 	


•  See CardMain.java	


* 

PokerHand	


•  Now that we have implemented CardInterface 
and Card, how would we implement 
PokerHand?	


•  What data structures do we need?	


•  We need a way to store 5 cards…	

•  Can use an array of Card objects!	


9	


Array Review	


•  Syntax for 1-D array:	

	
int hand[ ] = new int[5];	

•  Syntax for 2-D array:	

	
int hand[ ][ ] = new int[10][15];!
•  Determine size of array?	

	
hand.length;  //not .length()!!!

10	


Class Specialization	


•  We now know that classes can implement one 
or more interfaces	


•  Classes can also extend other classes	

•  Inherit fields and method bodies	

•  Note: implements does not do this!!!!!!!	


•  Interfaces can extend other interfaces	


•  By extending other classes/interfaces, we can 
create specialized classes	


11	
 12	


Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
  //can use swim() in Fish without implementing it!
  //or can optionally override using a specialized swim()!
  public void swim() { … }!
!
}	


•  What does the following code do?	

Fish fish = new Shark();!
fish.swim();!
!

•  What are the benefits of specialization?!



2/12/14 

3 

13	


Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
  //can use swim() in Fish without implementing it!
  //or can optionally override using a specialized swim()!
  public void swim() { … }!
!
}	


•  What does the following code do?	

Fish fish = new Shark();!
fish.swim(); This calls Shark.swim()	

!

•  What are the benefits of specialization?!
•  Code reuse and extensibility	


Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
  //can use swim() in Fish without implementing it!
  //or can optionally override using a specialized swim()!
  public void swim() { … }!
  public void attack() { … }!
}	


•  What does the following code do?	

Fish fish = new Shark();!
fish.swim();!
fish.eat();!

•  Does this work?	

fish.attack();	


14	


Specialization Example	

class Fish { !
!public void swim() { … }!
!public void eat() { … }!

}!
!
class Shark extends Fish {!
  //can use swim() in Fish without implementing it!
  //or can optionally override using a specialized swim()!
  public void swim() { … }!
  public void attack() { … }!
}	


•  What does the following code do?	

Fish fish = new Shark();!
fish.swim();!
fish.eat(); Calls Fish.eat()!

•  Does this work?	

fish.attack(); No, because attack() is not defined in Fish.	


15	


(See additional examples in FishMain.java)	



