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CSCI 136���
Data Structures &���

Advanced Programming	



Jeannie Albrecht	


Lecture 26	



April 23, 2014	



Administrative Details	


•  Darwin lab today	


•  Part 1 due next Monday Apr 28th  	


•  Part 2 due Monday May 5th  	



•  Midterm 2 @ 1:00 next Wed (Apr 24th) in Wege	


•  Sample exam posted on Handouts page later today	



•  Tentative review session	


•  Tue 9:30pm-10:30pm in TCL 202 (?)	


	



Midterm 2	



•  Stacks - Linear structure	


•  Queues - Linear structure	


•  Iterators - Think about vectors, lists, etc.	


•  Comparables and Ordered Structures	



•  Comparators vs. Comparables	


•  OrderedVector, OrderedList, OrderedArray	



•  Trees	


•  BinaryTree class	


•  Tree traversal and iterators	



•  Priority Queues and Heaps	


•  Array/vector representation of PQ	


•  Heap construction and maintenance	


•  No skew heaps!	



•  Binary Search Trees (?) - TBD	



Last Time	



•  Briefly talked about how to represent a tree 
using an array (or vector/list) 	



•  Starting talking about Priority Queues	



Today’s Outline	



•  Continue discussing priority queues	


•  Discuss ways to implement priority queues 

using ordered structures and heaps	



Recap: Priority Queues	



•  Name is misleading: they are not FIFO!	


•  Always dequeue object with highest priority 

regardless of when it was enqueued	



public interface PriorityQueue<E extends !
! ! ! ! ! Comparable<E>> { !
!public E getFirst(); !
!public E remove(); !
!public void add(E value); !
!public boolean isEmpty(); !
!public int size(); !
!public void clear();!

} !



4/23/14 

2 

Recap: Heap	



•  We can implement PQs using a heap	


•  Partially ordered binary tree	



•  A heap is a complete tree where:	


•  Root holds smallest value (i.e., one with highest priority)	


•  Left and right subtrees are also heaps	



•  So values descend in order (priority) from root to 
leaf, or ascend as you go up to root from leaf	



•  Invariant for nodes	


•  node.value() <= node.left.value()	


•  node.value() <=node.right.value()	



•  Several valid heaps for same data set (no unique 
representation) 	



Implementing Heaps	



•  VectorHeap	


•  Use logical array representation of BT (like last class)	


•  But use extensible vector instead of array (makes adding 

elements easier)	



•  Features	


•  No gaps in array – why?	



•  Because BT is complete!	



•  Invariant	


•  data[i] <= data[2i+1]; data[i] <= data[2i+2]!

•  When elements are added and removed, do small amount 
of work to “re-heapify”	



Insertion	



•  Example	


•  Add ‘Z’ to our heap from last class	



•  Now add ‘A’	



•  How do we insert elements into the heap?	


•  First, add new Object to end of vector	


•  Then heapify: percolate Object up to correct position (if 

needed) 	


•  Let’s look at the code (recursive and iterative)	



•  Cost?	


•  O(log n)	



Insertion (iterative)	


protected Vector<E> data; !
!
public void add(E value) {!
        data.add(value);!

        percolateUp(data.size()-1);!
}!
!

protected static int parent(int i) {!
        return (i-1)/2;!
}!
!

protected void percolateUp(int leaf) {!
        int parent = parent(leaf);  //find index of parent!
        E value = data.get(leaf);   //get value of leaf node (the one we just added)!

!    //while the leaf’s value is smaller than its parent…!
        while (leaf > 0 && (value.compareTo(data.get(parent)) < 0)) {!
            data.set(leaf,data.get(parent));  //set parent’s value to leaf node index!
            leaf = parent;          //update leaf index          !

            parent = parent(leaf);  //recompute parent index (ie, move up one level)!
        }!
        data.set(leaf,value);       //we’ve found the right index (leaf) so set value!
}!

Removal	



•  Example	


•  How do we remove elements from the heap?	


•  First remove top (root) element	


•  Replace with rightmost leaf (last element)	



•  Push down until heap is valid again (by always 
swapping element with smallest/highest priority 
child)	



•  Cost?	


•  O(log n)	



Removal (iterative)	


protected Vector<E> data;!
 !
public E remove() {!

        E minVal = getFirst();!
        data.set(0,data.get(data.size()-1)); //move last node to index 0!
        data.setSize(data.size()-1); //explicitly set vector size!
        if (data.size() > 1) pushDownRoot(0);!
        return minVal;!
}!

!
public E getFirst() {!
        return data.get(0);!
}!
!
!
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Removal (iterative)	


protected void pushDownRoot(int root) {!
    int heapSize = data.size();!
    E value = data.get(root);!
    while (root < heapSize) { //can’t move beyond end of vector!

       int childpos = left(root);  //compute index of left child!
       if (childpos < heapSize) { //not at a leaf yet !
       //figure out if right or left child is smaller!

           if ((right(root) < heapSize) &&!
               ((data.get(childpos+1)).compareTo(data.get(childpos)) < 0)) {!
                  childpos++;  !
           }!

           // Assert: childpos indexes smaller of two children!
           if ((data.get(childpos)).compareTo(value) < 0) { //root is bigger than child!
              data.set(root,data.get(childpos));!

              root = childpos;  //need to keep moving down tree!
           } else { //found right location!
              data.set(root,value);!
              return;!

           }!
       } else { //at a leaf! insert and halt!
           data.set(root,value);!
           return;!

       }       !
    }!
}!

VectorHeap Summary	



•  Can implement methods recursively or 
iteratively	



•  Add/remove are both O(log n)	


•  Data is not completely sorted	


•  Partial order is maintained	



•  Why? 	


•  We can’t say anything about order of siblings	



An Aside: Skew Heap	



•  What if heaps are not complete BTs?	


•  We can implement PQs using skew heaps 

instead of “regular” complete heaps	


•  Key differences:	


•  Rather than use Vector as underlying data 

structure, use BT	


•  Need a merge operation that merges two heaps 

together into one heap	



•  Details in book…(not on midterm!!)	



VH Questions	



•  Why do we swap with the smallest child in 
removal/pushDownRoot?	



•  Why do we pick rightmost leaf?	



•  Why are they only O(log n)?  (Aren’t we 
adding and removing from a vector??)	



Heapsort	



•  We can also use a priority queue (and a heap) as the 
underlying mechanism for sorting an array/vector of 
objects	



•  General idea:	


•  Start with unsorted array/vector	


•  Remove elements and insert into heap one at a time, 

running heapify on each step	



•  When no elements are left in array, remove from heap 
and add to array in sorted order	



•  Example	



Heapsort	



•  What is the runtime of heapsort?	


•  n insertions at O(log n) each: O(n log n)	


•  n removals at O(log n) each: O(n log n)	



•  So overall heapsort takes O(n log n)	



•  But this is usually 3-4x slower than QuickSort!	


•  this == Lame	
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!
int v[] = ...;!
!
VectorHeap<Integer> h = new VectorHeap<Integer>();!
for (int i = 0; i < v.length; i++) {!
  h.add(v[i]);!
}!
!
for (int i = 0; i < v.length; i++) {!
  v[i] = h.remove();!
}!

Lame Heap Sort	
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Can We Do Better?	



•  Just make unordered array a heap without 
running heapify (percolateUp) on each 
addition	



•  Treat unsorted array as broken heap 	



•  Leaves of tree are already heaps	


•  We just need to fix the rest…	
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Better Heap Sort	
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Better Heap Sort	
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•  We need to fix the subtrees rooted at 46 and 19 	



•  Call pushDownRoot on 46, 19	



Better Heap Sort	
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•  Now subtrees at 21 and 12 are valid heaps	



Better Heap Sort	
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•  We need to fix the subtrees rooted at 25 	



•  Call pushDownRoot on 25	



Better Heap Sort	
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•  Now we have a valid heap!	



Better Heap Sort	


class VectorHeap<E extends Comparable<E>> !
   implements PriorityQueue<E> {!
!
  protected Vector<E> data;!
  ...!
  public VectorHeap(E v[]) {!
    data = new Vector<E>();!
    for (int i = 0; i < v.length; i++) {!
      data.add(v[i]); !
    }!
    for (int i = data.size()/2 - 1; i >= 0; i--) {!
      //why data.size()/2??!
      pushDownRoot(i);!
    }!
  }!
  ...!
}!

Better Heap Sort	



0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Better Heap Sort	

 Better Heap Sort	



•  So still slower than QuickSort, but only 2x 
slower	



•  Cost?	


•  You can create heap from array in O(n) time	



•  Proof is left as an exercise…	


•  (It’s a little tricky)	



•  But still need O(n log n) to remove	


•  So total cost is still O(n log n)	



•  Any questions?	
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Why Heapsort?	



•  Heapsort is slower than Quicksort in general	


•  Any benefits to heapsort?	


•  Guaranteed O(n log n) runtime	


•  Constant space overhead	



•  Works well on mostly sorted data, unlike 
quicksort	



•  Good for incremental sorting	



Tree Wrapup	



•  General Binary Trees	


•  Express hierarchical relationships	


•  “Ordering” is based on some external notion	



•  i.e., ancestry, game boards, decisions, etc.	



•  Heap	


•  Partially ordered (complete) binary tree based on 

priorities (highest priority node is root)	


•  Node invariants: parent has higher priority than 

both children	




