
4/23/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 26	

April 23, 2014	

Administrative Details	

•  Darwin lab today	

•  Part 1 due next Monday Apr 28th 	

•  Part 2 due Monday May 5th 	

•  Midterm 2 @ 1:00 next Wed (Apr 24th) in Wege	

•  Sample exam posted on Handouts page later today	

•  Tentative review session	

•  Tue 9:30pm-10:30pm in TCL 202 (?)	

	

Midterm 2	

•  Stacks - Linear structure	

•  Queues - Linear structure	

•  Iterators - Think about vectors, lists, etc.	

•  Comparables and Ordered Structures	

•  Comparators vs. Comparables	

•  OrderedVector, OrderedList, OrderedArray	

•  Trees	

•  BinaryTree class	

•  Tree traversal and iterators	

•  Priority Queues and Heaps	

•  Array/vector representation of PQ	

•  Heap construction and maintenance	

•  No skew heaps!	

•  Binary Search Trees (?) - TBD	

Last Time	

•  Briefly talked about how to represent a tree
using an array (or vector/list) 	

•  Starting talking about Priority Queues	

Today’s Outline	

•  Continue discussing priority queues	

•  Discuss ways to implement priority queues

using ordered structures and heaps	

Recap: Priority Queues	

•  Name is misleading: they are not FIFO!	

•  Always dequeue object with highest priority

regardless of when it was enqueued	

public interface PriorityQueue<E extends !
! ! ! ! ! Comparable<E>> { !
!public E getFirst(); !
!public E remove(); !
!public void add(E value); !
!public boolean isEmpty(); !
!public int size(); !
!public void clear();!

} !

4/23/14

2

Recap: Heap	

•  We can implement PQs using a heap	

•  Partially ordered binary tree	

•  A heap is a complete tree where:	

•  Root holds smallest value (i.e., one with highest priority)	

•  Left and right subtrees are also heaps	

•  So values descend in order (priority) from root to
leaf, or ascend as you go up to root from leaf	

•  Invariant for nodes	

•  node.value() <= node.left.value()	

•  node.value() <=node.right.value()	

•  Several valid heaps for same data set (no unique
representation) 	

Implementing Heaps	

•  VectorHeap	

•  Use logical array representation of BT (like last class)	

•  But use extensible vector instead of array (makes adding

elements easier)	

•  Features	

•  No gaps in array – why?	

•  Because BT is complete!	

•  Invariant	

•  data[i] <= data[2i+1]; data[i] <= data[2i+2]!

•  When elements are added and removed, do small amount
of work to “re-heapify”	

Insertion	

•  Example	

•  Add ‘Z’ to our heap from last class	

•  Now add ‘A’	

•  How do we insert elements into the heap?	

•  First, add new Object to end of vector	

•  Then heapify: percolate Object up to correct position (if

needed) 	

•  Let’s look at the code (recursive and iterative)	

•  Cost?	

•  O(log n)	

Insertion (iterative)	

protected Vector<E> data; !
!
public void add(E value) {!
 data.add(value);!

 percolateUp(data.size()-1);!
}!
!

protected static int parent(int i) {!
 return (i-1)/2;!
}!
!

protected void percolateUp(int leaf) {!
 int parent = parent(leaf); //find index of parent!
 E value = data.get(leaf); //get value of leaf node (the one we just added)!

! //while the leaf’s value is smaller than its parent…!
 while (leaf > 0 && (value.compareTo(data.get(parent)) < 0)) {!
 data.set(leaf,data.get(parent)); //set parent’s value to leaf node index!
 leaf = parent; //update leaf index !

 parent = parent(leaf); //recompute parent index (ie, move up one level)!
 }!
 data.set(leaf,value); //we’ve found the right index (leaf) so set value!
}!

Removal	

•  Example	

•  How do we remove elements from the heap?	

•  First remove top (root) element	

•  Replace with rightmost leaf (last element)	

•  Push down until heap is valid again (by always
swapping element with smallest/highest priority
child)	

•  Cost?	

•  O(log n)	

Removal (iterative)	

protected Vector<E> data;!
 !
public E remove() {!

 E minVal = getFirst();!
 data.set(0,data.get(data.size()-1)); //move last node to index 0!
 data.setSize(data.size()-1); //explicitly set vector size!
 if (data.size() > 1) pushDownRoot(0);!
 return minVal;!
}!

!
public E getFirst() {!
 return data.get(0);!
}!
!
!

4/23/14

3

Removal (iterative)	

protected void pushDownRoot(int root) {!
 int heapSize = data.size();!
 E value = data.get(root);!
 while (root < heapSize) { //can’t move beyond end of vector!

 int childpos = left(root); //compute index of left child!
 if (childpos < heapSize) { //not at a leaf yet !
 //figure out if right or left child is smaller!

 if ((right(root) < heapSize) &&!
 ((data.get(childpos+1)).compareTo(data.get(childpos)) < 0)) {!
 childpos++; !
 }!

 // Assert: childpos indexes smaller of two children!
 if ((data.get(childpos)).compareTo(value) < 0) { //root is bigger than child!
 data.set(root,data.get(childpos));!

 root = childpos; //need to keep moving down tree!
 } else { //found right location!
 data.set(root,value);!
 return;!

 }!
 } else { //at a leaf! insert and halt!
 data.set(root,value);!
 return;!

 } !
 }!
}!

VectorHeap Summary	

•  Can implement methods recursively or
iteratively	

•  Add/remove are both O(log n)	

•  Data is not completely sorted	

•  Partial order is maintained	

•  Why? 	

•  We can’t say anything about order of siblings	

An Aside: Skew Heap	

•  What if heaps are not complete BTs?	

•  We can implement PQs using skew heaps

instead of “regular” complete heaps	

•  Key differences:	

•  Rather than use Vector as underlying data

structure, use BT	

•  Need a merge operation that merges two heaps

together into one heap	

•  Details in book…(not on midterm!!)	

VH Questions	

•  Why do we swap with the smallest child in
removal/pushDownRoot?	

•  Why do we pick rightmost leaf?	

•  Why are they only O(log n)? (Aren’t we
adding and removing from a vector??)	

Heapsort	

•  We can also use a priority queue (and a heap) as the
underlying mechanism for sorting an array/vector of
objects	

•  General idea:	

•  Start with unsorted array/vector	

•  Remove elements and insert into heap one at a time,

running heapify on each step	

•  When no elements are left in array, remove from heap
and add to array in sorted order	

•  Example	

Heapsort	

•  What is the runtime of heapsort?	

•  n insertions at O(log n) each: O(n log n)	

•  n removals at O(log n) each: O(n log n)	

•  So overall heapsort takes O(n log n)	

•  But this is usually 3-4x slower than QuickSort!	

•  this == Lame	

4/23/14

4

!
int v[] = ...;!
!
VectorHeap<Integer> h = new VectorHeap<Integer>();!
for (int i = 0; i < v.length; i++) {!
 h.add(v[i]);!
}!
!
for (int i = 0; i < v.length; i++) {!
 v[i] = h.remove();!
}!

Lame Heap Sort	

0

500

1000

1500

2000

2500

3000

3500

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Lame Heap Sort

Quick Sort

Lame Heap Sort	

Can We Do Better?	

•  Just make unordered array a heap without
running heapify (percolateUp) on each
addition	

•  Treat unsorted array as broken heap 	

•  Leaves of tree are already heaps	

•  We just need to fix the rest…	

25	

46	

58	

 21	

19	

23	

 12	

25	

 46	

 58	

 21	

19	

 23	

 12	

Better Heap Sort	

25	

46	

58	

 21	

19	

23	

 12	

Better Heap Sort	

25	

46	

58	

 21	

19	

23	

 12	

•  We need to fix the subtrees rooted at 46 and 19 	

•  Call pushDownRoot on 46, 19	

Better Heap Sort	

4/23/14

5

25	

21	

58	

 46	

12	

23	

 19	

•  Now subtrees at 21 and 12 are valid heaps	

Better Heap Sort	

25	

21	

58	

 46	

12	

23	

 19	

•  We need to fix the subtrees rooted at 25 	

•  Call pushDownRoot on 25	

Better Heap Sort	

12	

21	

58	

 46	

19	

23	

 25	

•  Now we have a valid heap!	

Better Heap Sort	

class VectorHeap<E extends Comparable<E>> !
 implements PriorityQueue<E> {!
!
 protected Vector<E> data;!
 ...!
 public VectorHeap(E v[]) {!
 data = new Vector<E>();!
 for (int i = 0; i < v.length; i++) {!
 data.add(v[i]); !
 }!
 for (int i = data.size()/2 - 1; i >= 0; i--) {!
 //why data.size()/2??!
 pushDownRoot(i);!
 }!
 }!
 ...!
}!

Better Heap Sort	

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Better Heap Sort	

 Better Heap Sort	

•  So still slower than QuickSort, but only 2x
slower	

•  Cost?	

•  You can create heap from array in O(n) time	

•  Proof is left as an exercise…	

•  (It’s a little tricky)	

•  But still need O(n log n) to remove	

•  So total cost is still O(n log n)	

•  Any questions?	

4/23/14

6

Why Heapsort?	

•  Heapsort is slower than Quicksort in general	

•  Any benefits to heapsort?	

•  Guaranteed O(n log n) runtime	

•  Constant space overhead	

•  Works well on mostly sorted data, unlike
quicksort	

•  Good for incremental sorting	

Tree Wrapup	

•  General Binary Trees	

•  Express hierarchical relationships	

•  “Ordering” is based on some external notion	

•  i.e., ancestry, game boards, decisions, etc.	

•  Heap	

•  Partially ordered (complete) binary tree based on

priorities (highest priority node is root)	

•  Node invariants: parent has higher priority than

both children	

