CSCI 136
Data Structures &
Advanced Programming

Jeannie Albrecht
Lecture 26
April 23,2014

4/23/14

Administrative Details

 Darwin lab today
e Part | due next Monday Apr 28"
e Part 2 due Monday May 5%
e Midterm 2 @ 1:00 next Wed (Apr 24%") in Wege
* Sample exam posted on Handouts page later today
* Tentative review session
* Tue 9:30pm-10:30pm in TCL 202 (?)

Midterm 2

Stacks - Linear structure
Queues - Linear structure
Iterators - Think about vectors, lists, etc.
Comparables and Ordered Structures
* Comparators vs. Comparables
¢ OrderedVector, OrderedList, OrderedArray
¢ Trees
* BinaryTree class
* Tree traversal and iterators

¢ Priority Queues and Heaps
* Array/vector representation of PQ
* Heap construction and maintenance
* No skew heaps!

* Binary Search Trees (?) - TBD

Last Time

* Briefly talked about how to represent a tree
using an array (or vector/list)

* Starting talking about Priority Queues

Today’s Outline

 Continue discussing priority queues

* Discuss ways to implement priority queues
using ordered structures and heaps

Recap: Priority Queues

* Name is misleading: they are not FIFO!

* Always dequeue object with highest priority
regardless of when it was enqueued

public interface PriorityQueue<E extends
Comparable<E>> {

public E getFirst();

public E remove();

public void add(E value);

public boolean isEmpty();

public int size();

public void clear();




Recap: Heap

* We can implement PQs using a heap

« Partially ordered binary tree

A heap is a complete tree where:

¢ Root holds smallest value (i.e., one with highest priority)
¢ Left and right subtrees are also heaps
So values descend in order (priority) from root to
leaf, or ascend as you go up to root from leaf
Invariant for nodes

* node.value() <= node.left.value()

¢ node.value() <=node.right.value()

Several valid heaps for same data set (no unique
representation)

4/23/14

Implementing Heaps

* VectorHeap

* Use logical array representation of BT (like last class)
* But use extensible vector instead of array (makes adding
elements easier)
* Features
* No gaps in array — why?
* Because BT is complete!
* Invariant
e data[i] <= data[2i+1]; data[i] <= data[2i+2]

* When elements are added and removed, do small amount
of work to “re-heapify”

Insertion

* Example
¢ Add ‘Z’ to our heap from last class
* Now add ‘A’

* How do we insert elements into the heap?
« First, add new Object to end of vector

¢ Then heapify: percolate Object up to correct position (if
needed)

¢ Let’s look at the code (recursive and iterative)
e Cost?
e O(log n)

Insertion (iterative)

protected Vector<k> data;

public void add(E value) {
data.add(value);
percolateup(data.size()-1);

}

protected static int parent(int i) {
return (i-1)/2;

}

protected void percolateUp(int leaf) {
int parent = parent(leaf); //find index of parent
E value = data.get(leaf); //get value of leaf node (the one we just added)
//vhile the leaf's value is smaller than its parent
while (leaf > 0 && (value.compareTo(data.get (pare <0 {
data.set(leaf,data.get(parent)); //set parent’s value to leaf node index
leaf = parent; //update leaf index

parent = parent(leaf); //recompute parent index (ie, move up one level)
b

data.set(leaf,value); //we've found the right index (leaf) so set value

Removal

* Example

* How do we remove elements from the heap?
* First remove top (root) element
* Replace with rightmost leaf (last element)

* Push down until heap is valid again (by always
swapping element with smallest/highest priority
child)

* Cost!
* O(log n)

Removal (iterative)

protected Vector<E> data;

public E remove() {
E minVal = getFirst();
data.set(0,data.get(data.size()-1)); //move last node to index 0
data.setSize(data.size()-1); //explicitly set vector size
if (data.size() > 1) pushDownRoot(0);
return minval;

}

public E getFirst() {
return data.get(0);
}




Removal (iterative)

protected void pushDownRoot (int root) {
int heapSize = data.size();
E value = data.get(root);
while (root < heapSize) { //can't move beyond end of vector
int childpos = left(root); //compute index of left child
if (childpos < heapSize) { //not at a leaf yet
//figure out if right or left child is smaller
if ((right(root) < heapSize) &&
((data.get(childpos+1)).compareTo(data.get (childpos)) < 0)) {
childpos++;
}
// Assert: childpos indexes smaller of two children
if ((data.get(childpos)).compareTo(value) < 0) { //root is bigger than child
data.set(root,data.get(childpos));
root = childpos; //need to keep moving down tree
} else { //found right location
data.set (root,value);
return;

} else { //at a leaf! insert and halt
data.set (root,value);
return;

4/23/14

VectorHeap Summary

e Can implement methods recursively or
iteratively

* Add/remove are both O(log n)

* Data is not completely sorted
* Partial order is maintained
* Why?

* We can’t say anything about order of siblings

An Aside: Skew Heap

* What if heaps are not complete BTs?

* We can implement PQs using skew heaps
instead of “regular” complete heaps

 Key differences:

* Rather than use Vector as underlying data
structure, use BT

* Need a merge operation that merges two heaps
together into one heap

* Details in book...(not on midterm!!

VH Questions

* Why do we swap with the smallest child in
removal/pushDownRoot?

* Why do we pick rightmost leaf?

* Why are they only O(log n)? (Aren’t we
adding and removing from a vector??)

Heapsort

* We can also use a priority queue (and a heap) as the
underlying mechanism for sorting an array/vector of
objects

¢ General idea:
 Start with unsorted array/vector

* Remove elements and insert into heap one at a time,
running heapify on each step

* When no elements are left in array, remove from heap
and add to array in sorted order

* Example

Heapsort

* What is the runtime of heapsort?
* n insertions at O(log n) each: O(n log n)
* n removals at O(log n) each: O(n log n)
* So overall heapsort takes O(n log n)

* But this is usually 3-4x slower than QuickSort!
e this == Lame




Lame Heap Sort

int v[] = ...;

VectorHeap<Integer> h = new VectorHeap<Integer>();
for (int i = 0; i < v.length; i++) {

h.add(v[i]);
}

for (int i = 0; i < v.length; i++) {
v[i] = h.remove();

}

4/23/14

3500

3000

2500

2000

1500

1000

Lame Heap Sort

Lame Heap Sort
—#— Quick Sort

/‘

——

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Can We Do Better?

* Just make unordered array a heap without
running heapify (percolateUp) on each
addition

* Treat unsorted array as broken heap

* Leaves of tree are already heaps
* We just need to fix the rest...

Better Heap Sort

[25]46] 19 58] 21]23]12]

25
A
46 19
/\ /\
58 21 23 12

Better Heap Sort

25
/////////\\\\\\\\\
46 19
N N
58 21 23 12

Better Heap Sort

25

*We need to fix the subtrees rooted at 46 and 19

« Call pushDownRoot on 46, |9




4/23/14

Better Heap Sort

25
A
21 12
PN PN
58 46 23 19

* Now subtrees at 21| and 12 are valid heaps

Better Heap Sort

*We need to fix the subtrees rooted at 25

« Call pushDownRoot on 25

Better Heap Sort

N

58 46

23/\25

* Now we have a valid heap!

Better Heap Sort

class VectorHeap<E extends Comparable<E>>
implements PriorityQueue<E> {

protected Vector<E> data;

public VectorHeap(E v[]) {
data = new Vector<E>();
for (int i = 0; i < v.length; i++) {
data.add(v[i]);
}
for (int i = data.size()/2 - 1; i >= 0; i--) {
//why data.size()/22?
pushDownRoot (1) ;
}
}

Better Heap Sort

2500

2000

1500

Time (ms)

1000

/ Heap Sort

500 —#— Quick Sort ™

0 200000 400000 600000 800000 1000000

Size

Better Heap Sort

e So still slower than QuickSort, but only 2x
slower
e Cost?
* You can create heap from array in O(n) time
¢ Proof is left as an exercise...
e (It’s a little tricky)
¢ But still need O(n log n) to remove
* So total cost is still O(n log n)

* Any questions?




4/23/14

Why Heapsort? Tree Wrapup

Heapsort is slower than Quicksort in general * General Binary Trees
Any benefits to heapsort? * Express hierarchical relationships
* Guaranteed O(n log n) runtime * “Ordering” is based on some external notion

* i.e., ancestry, game boards, decisions, etc.
* Heap

* Partially ordered (complete) binary tree based on
priorities (highest priority node is root)

* Constant space overhead
Works well on mostly sorted data, unlike
quicksort

Good for incremental sortin,
g * Node invariants: parent has higher priority than

both children




