
4/22/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 25	

April 21, 2014	

2	

Administrative Details	

•  Lab 8 difficulties	

•  Anyone stuck?	

•  Office hours from 1:30-3 today	

•  Darwin lab	

•  Part 1 due Monday Apr 28 (very easy milestone)	

•  Part 2 due Monday May 5	

•  Midterm 2 is next Wed Apr 30 @1:00 in Wege	

•  Review session next week? Tuesday at 9:30pm? I’ll

let you know…	

3	

Midterm 2	

•  Will cover all new material since last midterm	

•  Format - same as Midterm 1 	

•  ~90 minutes to complete exam (I will give you 120 minutes)	

•  Covers book, labs, and lecture material through Priority queues/Heaps

and Lab 9 (part 1)	

•  Closed book and notes	

•  Cumulative, but emphasis will be on new material	

•  Approx one question on old material	

•  Focus on Ch 7, 8, 10-13	

•  Stacks, Queues, Iterators, Comparables and Ordered

Structures, Trees, Priority Queues, Heaps 	

4	

Last Time	

•  Wrapped up Binary Trees	

•  Finished discussing tree traversal methods and

iterators	

•  Talked about Huffman codes	

5	

Today’s Outline	

•  Look at different ways to represent trees	

•  Learn about priority queues and heaps	

6	

Huffman Codes	

•  General idea	

•  Use less bits for most common letters	

•  AN ANTARCTIC PENGUIN	

•  Compute letter frequencies	

 A: 3 !N: 4!
! T: 2! !R: 1!
!! C: 2! !I: 2!
!! P: 1! !E: 1!
!! G: 1! !U: 1!
!! _: 2!

•  Build tree by recursively creating trees of smallest weighted
components	

•  Result: 67 bits	

4/22/14

2

7	

Other Compression Techniques	

•  Examine larger pieces of data for patterns	

•  AAAAA BBBBBBBBB CC AAAAAAA	

•  (5,A) (9,B) (2,C) (7,A)	

•  Lempel-Ziv-Welch (LZW)	

•  Huffman code for longer substrings	

•  ABCABCABC	

–  0-255: ASCII characters	

–  256: AB	

–  257: ABC	

8	

Alternative Tree Representations	

•  Total # “slots” = 4n 	

•  Since each BinaryTree

maintains a reference to
left, right, parent, value	

•  Much more overhead than
vector, SLL, array, …	

•  But trees capture
successor and predecessor
relationships that other
data structures don’t… 	

Green

Blue Violet

Indigo Red

Orange Yellow

9	

Using Arrays to Store Trees	

•  Encode structure of tree in array indexes	

•  Where are children of node i?	

•  Children of node i are at 2i+1 and 2i+2	

•  Look at example	

•  Where is parent of node j?	

•  Parent of node j is at (j-1)/2	

10	

G B V _ _ O Y ! Green

Blue Violet

Orange Yellow

public class ArrayTree {!
 protected Object[] data;!
!
 protected int left(int node) {!
 return 2*node+1;!
 }!
!
 protected int parent(int node) {!
 return (node-1)/2;!
 }!
!
 …!
}!

0 1 2 3 4 5 6 !

11	

ArrayTree Tradeoffs	

•  Why are ArrayTrees good?	

•  Save space for links (no “slots” needed) 	
	

•  No need for additional memory allocated/garbage

collected	

•  Works well for full or complete trees	

•  Complete: All levels except last are full and all gaps are at right	

•  “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”	

•  Why bad?	

•  Could waste a lot of space (sparse trees)	

•  Height of n requires 2n+1-1 array slots even if only O(n)

elements	

12	

Moving on…	

4/22/14

3

13	

Priority Queues (PQ)	

•  Recall the use of a “priority queue” in routing	

•  Give higher priority to some packets so they

are routed quicker than others	

•  Receive packets in any order but process them

according to priority	

Lookup	

70

%	

20%	

10%	

14	

Priority Queues	

Packet Sources May Be Ordered by Sender	

	
sysnet.cs.williams.edu ! priority = 1 (best)!
!bull.cs.williams.edu ! ! ! !2!
!yahoo.com! ! ! ! ! !10!
!spammer.com ! ! ! ! !100 (worst)!

Lookup	

15	

Priority Queues	

•  Name is misleading	

•  PQs are a bit like normal queues, except they

are not FIFO	

•  Always dequeue object with highest

priority regardless of when it was enqueued	

•  Data can be received/inserted in any order,
but it is always returned/removed in same
order (according to priority)	

16	

Priority Queues	

•  Like ordered structures (i.e., OrderedVectors and
OrderedLists), PQs appear to keep data in order	

•  Unlike ordered structures, PQs allow the user only
to remove its “smallest/best” element 	

•  PQs are also similar to Linear structures (i.e., stacks
and queues): values are added to the structure, and
they later may be inspected or removed	

•  Unlike Linear structures, once a value is added to
PQ it may only be removed if it is the minimum
value (i.e., value with highest priority). Not FIFO or
LIFO!	

17	

PQs	

•  Priority queues are used for:	

•  Scheduling processes in an operating system	

•  Priority is function of time lost + process priority	

•  Order services on server	

•  Backup is low priority, so don’t do when high priority tasks need

to happen	

•  Scheduling future events in a simulation	

•  Medical waiting room	

•  Huffman codes - order by tree size/weight	

•  To generally rank choices that are generated out of order	

18	

PQ Interface	

public interface PriorityQueue<E extends Comparable<E>> { !
!public E getFirst(); !
!public E remove(); !
!public void add(E value); !
!public boolean isEmpty(); !
!public int size(); !
!public void clear();!

} !

4/22/14

4

19	

Things to Note about PQ Interface	

•  Unlike previous structures, we do not extend
any other interfaces	

•  PriorityQueue methods consume Comparable
parameters and return Comparable values	

•  (Could be made to use Comparators
instead…)	

20	

Implementing PQs	

•  Queue?	

•  Wouldn’t work so well because we can’t insert and

remove in the “right” way (i.e., keeping things ordered)	

•  OrderedVector?	

•  Keep ordered vector of objects	

•  O(n) to add/remove from vector	

•  Details in book…	

•  Can we do better than O(n)?	

•  Heap?	

•  Partially ordered binary tree	

21	

Heap	

•  A heap is a special type of binary tree	

•  A heap is a complete binary tree where:	

•  Root holds smallest (highest priority) value	

•  Left and right subtrees are also heaps (this is important!)	

•  So values descend in order (priority) from root to
leaf, or ascend as you go up to root from leaf	

•  Invariant for nodes	

•  node.value() <= node.left.value()	

•  node.value() <=node.right.value()	

•  Several valid heaps for same data set (no unique
representation) 	

22	

Implementing Heaps	

•  VectorHeap	

•  Use logical array representation of BT (ArrayTree)	

•  But use extensible vector instead of array (makes adding

elements easier)	

•  Features	

•  No gaps in array -- why?	

•  Because BT is always complete in a heap!	

•  Invariant	

•  data[i] <= data[2i+1]; data[i]<=data[2i+2]	

•  When elements are added and removed, do small amount
of work to “re-heapify”	

•  (Example on board)	

