
4/18/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 24	

April 18, 2014	

Administrative Details	

•  Lab 8 – due Monday	

•  Any questions?	

Last Time	

•  Wrapped up decision trees	

•  Discussed tree traversal	

•  Looked closely at code for pre-order	

public E next() {!
!BinaryTree top = todo.pop();!
!E result = top.value();!
!if(!top.right().isEmpty()) {!
! todo.push(top.right());!
!}!
!if(!top.left().isEmpty()) {!
! todo.push(top.left());!
!}!
!return result;!

}!

Pre-order	

•  Pre-order: +*237	

•  Each node is visited before any children. Visit node, then

each node in left subtree, then each node in right subtree.	

public void preOrder(BT root) {!
!if (root.isEmpty()) return;!
!process(root.value());!
!preOrder(root.left());!
!preOrder(root.right());!

}!

•  In real code, we need to keep track of our own
stack!	

+	

7	
*	

3	
2	

Today’s Outline	

•  Finish discussing tree iterators	

•  In-order, level-order, post-order	

•  Wrap up chapter 12 (Binary Trees) and start
chapter 13 (Priority Queues)	

•  Briefly discuss Huffman codes	

Tree Traversal Recap	

•  Pre-order: +*237	

•  Each node is visited before any children. Visit node, then

each node in left subtree, then each node in right subtree.	

•  In-order: 2*3+7	

•  Each node is visited after all nodes in left subtree are

visited and before any nodes in right subtree.	

•  Post-order: 23*7+	

•  Each node is visited after its children are visited. Visit all

nodes in left subtree, then all nodes in right subtree, then
node itself.	

•  Level-order: +*723	

•  All nodes of level i are visited before nodes of level i+1. 	

+	

7	
*	

3	
2	

4/18/14

2

InOrder Iterator	

•  Outline: left - node - right	

1. Push left children (as far as possible) onto todo stack	

2. On call to next():	

•  Pop node from stack	

•  Push right child and follow left children as far as possible	

•  Return node’s value	

3. On call to hasNext():	

•  return !stack.isEmpty()	

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

Green	

todo stack	

Blue	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

B	

Green	

todo stack	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

B G	

Violet	

todo stack	

Orange	

Indigo	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

B G I	

Violet	

todo stack	

Orange	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

4/18/14

3

Orange	

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Yellow	

B G I O	

Violet	

todo stack	

Red	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

B G I O R	

Violet	

todo stack	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

B G I O R V	

Yellow	

todo stack	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

InOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

B G I O R V Y	

todo stack	

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Code?	

Level-order	

•  Let’s take a closer look at LevelOrder…	

•  Level-order: +*723	

•  All nodes of level i are visited before nodes of level i+1. 	

+	

7	
*	

3	
2	

LevelOrder Iterator	

•  Do we want to use a stack??	

•  No! Use a queue instead.	

•  Outline:	

1.  Enqueue root	

2.  On call to next():	

•  Dequeue node	

•  Enqueue left and right child	

•  Return node	

3.  On hasNext()	

•  Return !queue.isEmpty()	

4/18/14

4

Level-order	

•  Level-order: +*723	

•  All nodes of level i are visited before nodes of level i+1. 	

public void levelOrder(BT root) {!
!Queue q = new QueueList();!
!q.enqueue(root);!
!while(!q.isEmpty()) {!
! BT tree = (BT) q.dequeue();!
! if (!tree.isEmpty()) {!
! !process(tree.value());!
! !q.enqueue(tree.left());!
! !q.enqueue(tree.right());!
! }!
!}!

}	

+	

7	
*	

3	
2	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

Green	

todo queue	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

G	

Blue	

todo queue	

Violet	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

G B	

Violet	

todo queue	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

G B V	

Orange	

todo queue	

Yellow	

4/18/14

5

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

G B V O	

Yellow	

todo queue	

Indigo	

Red	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

G B V O Y	

Indigo	

todo queue	

Red	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

G B V O Y I	

todo queue	

Red	

LevelOrder Iterator	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

G B V O Y I R	

todo queue	

PostOrder Iterator	

•  Left as an exercise…	

Moving on…	

•  Note:	

•  Code for PostOrder is similar to PreOrder with

minor differences	

•  Please see Bailey for details (preferably before
your midterm!)	

4/18/14

6

An Aside: Tree Search Strategies	

•  Two main approaches	

•  Breadth-first search (BFS)	

•  Search across tree before searching down to another level	

•  Level-order traversal	

•  Depth-first search (DFS)	

•  Search down tree (to leaf) before search across tree	

•  Pre-order traversal	

•  DFS is more efficient if solution is “far away” from
root (i.e., many edges between root and solution) 	

Next up: Huffman Codes	

•  Normally, 1 character = 8 bits (1 byte)	

•  Allows for 28 = 256 different characters	

•  ‘A’ = 01000001, ‘B’ = 01000010	

•  Space to store “AN ANTARCTIC PENGUIN”	

•  20 characters -> 20*8 bits = 160 bits	

•  Is there a better way?	

•  Only 11 symbols are used (ANTRCIPEGU_)	

•  Only need 4 bits per symbol (since 24>11)!	

•  20*4 = 80 bits instead of 160!	

•  Can we still do better??	

Huffman Codes	

•  General idea	

•  Use less bits for most common letters	

•  AN ANTARCTIC PENGUIN	

•  Compute letter frequencies	

 A: 3 !N: 4!
! T: 2! !R: 1!
!! C: 2! !I: 2!
!! P: 1! !E: 1!
!! G: 1! !U: 1!
!! _: 2!

•  Build tree by recursively creating trees of smallest weighted
components	

How Many Bits?	

A: 100 x 3 !N: 101 x 4!

! T: 001 x 2 !R: 0000 x 1!
!!C: 010 x 2 !I: 011 x 2!
!!P: 0001 x 1 !E: 1100 x 1!
!!G: 1101 x 1 !U: 1110 x 1!
!!_: 1111 x 2!

•  So total number of bits = 67	

•  Note: There may be multiple possible Huffman trees	

•  All trees should use same total number of bits 	
!

Other Compression Techniques	

•  Examine larger pieces of data for patterns	

•  AAAAA BBBBBBBBB CC AAAAAAA	

•  (5,A) (9,B) (2,C) (7,A)	

•  Lempel-Ziv-Welch (LZW)	

•  Huffman code for longer substrings	

•  ABCABCABC	

–  0-255: ASCII characters	

–  256: AB	

–  257: ABC	

Alternative Tree Representations	

•  Total # “slots” = 4n 	

•  Since each BinaryTree

maintains a reference to
left, right, parent, value	

•  Much more overhead than
vector, SLL, array, …	

•  But trees capture
successor and predecessor
relationships that other
data structures don’t… 	

Green	

Blue	
 Violet	

Indigo	
 Red	

Orange	
 Yellow	

4/18/14

7

Using Arrays to Store Trees	

•  Encode structure of tree in array indexes	

•  Where are children of node i?	

•  Children of node i are at 2i+1 and 2i+2	

•  Look at example	

•  Where is parent of node j?	

•  Parent of node j is at (j-1)/2	

ArrayTree Tradeoffs	

•  Why are ArrayTrees good?	

•  Save space for links 	
	

•  No need for additional memory allocated/garbage

collected	

•  Works well for full or complete trees	

•  Complete: All levels except last are full and all gaps are at right	

•  “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”	

•  Why bad?	

•  Could waste a lot of space	

•  Height of n requires 2n+1-1 array slots even if only O(n)

elements	

