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CSCI 136���
Data Structures &���

Advanced Programming	


Jeannie Albrecht	

Lecture 24	


April 18, 2014	


Administrative Details	


•  Lab 8 – due Monday	

•  Any questions?	


Last Time	


•  Wrapped up decision trees	

•  Discussed tree traversal	

•  Looked closely at code for pre-order	


public E next() {!
!BinaryTree top = todo.pop();!
!E result = top.value();!
!if(!top.right().isEmpty()) {!
!    todo.push(top.right());!
!}!
!if(!top.left().isEmpty()) {!
!    todo.push(top.left());!
!}!
!return result;!

}!

Pre-order	


•  Pre-order: +*237	

•  Each node is visited before any children. Visit node, then 

each node in left subtree, then each node in right subtree.	


public void preOrder(BT root) {!
!if (root.isEmpty()) return;!
!process(root.value());!
!preOrder(root.left());!
!preOrder(root.right());!

}!

•  In real code, we need to keep track of our own 
stack!	
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Today’s Outline	


•  Finish discussing tree iterators	

•  In-order, level-order, post-order	


•  Wrap up chapter 12 (Binary Trees) and start  
chapter 13 (Priority Queues)	


•  Briefly discuss Huffman codes	


Tree Traversal Recap	


•  Pre-order: +*237	

•  Each node is visited before any children. Visit node, then 

each node in left subtree, then each node in right subtree.	


•  In-order: 2*3+7	

•  Each node is visited after all nodes in left subtree are 

visited and before any nodes in right subtree.	


•  Post-order: 23*7+	

•  Each node is visited after its children are visited. Visit all 

nodes in left subtree, then all nodes in right subtree, then 
node itself.	


•  Level-order: +*723	

•  All nodes of level i are visited before nodes of level i+1.  	
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InOrder Iterator	


•  Outline: left -  node - right	

1. Push left children (as far as possible) onto todo stack	


2. On call to next():	

•  Pop node from stack	


•  Push right child and follow left children as far as possible	


•  Return node’s value	


3. On call to hasNext():	

•  return !stack.isEmpty()	


InOrder Iterator	


Green	


Blue	
 Violet	


Indigo	
 Red	


Orange	
 Yellow	


Each node is visited after all nodes in left subtree 
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Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree. 
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Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree. 
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Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree. 
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Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree. 

Code?	


Level-order	


•  Let’s take a closer look at LevelOrder…	


•  Level-order: +*723	

•  All nodes of level i are visited before nodes of level i+1.  	
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LevelOrder Iterator	


•  Do we want to use a stack??	

•  No!  Use a queue instead.	


•  Outline:	

1.  Enqueue root	


2.  On call to next():	

•  Dequeue node	


•  Enqueue left and right child	


•  Return node	


3.  On hasNext()	

•  Return !queue.isEmpty()	
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Level-order	


•  Level-order: +*723	

•  All nodes of level i are visited before nodes of level i+1.  	


public void levelOrder(BT root) {!
!Queue q = new QueueList();!
!q.enqueue(root);!
!while(!q.isEmpty()) {!
!   BT tree = (BT) q.dequeue();!
!   if (!tree.isEmpty()) {!
! !process(tree.value());!
! !q.enqueue(tree.left());!
! !q.enqueue(tree.right());!
!   }!
!}!

}	
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PostOrder Iterator	


•  Left as an exercise…	


Moving on…	


•  Note:	

•  Code for PostOrder is similar to PreOrder with 

minor differences	


•  Please see Bailey for details (preferably before 
your midterm!)	
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An Aside: Tree Search Strategies	


•  Two main approaches	

•  Breadth-first search (BFS)	


•  Search across tree before searching down to another level	

•  Level-order traversal	


•  Depth-first search (DFS)	

•  Search down tree (to leaf) before search across tree	

•  Pre-order traversal	


•  DFS is more efficient if solution is “far away” from 
root (i.e., many edges between root and solution) 	


Next up: Huffman Codes	


•  Normally, 1 character = 8 bits (1 byte)	

•  Allows for 28 = 256 different characters	


•  ‘A’ = 01000001, ‘B’ = 01000010	

•  Space to store “AN ANTARCTIC PENGUIN”	


•  20 characters -> 20*8 bits = 160 bits	


•  Is there a better way?	

•  Only 11 symbols are used (ANTRCIPEGU_)	

•  Only need 4 bits per symbol (since 24>11)!	


•  20*4 = 80 bits instead of 160!	


•  Can we still do better??	


Huffman Codes	


•  General idea	

•  Use less bits for most common letters	

•  AN ANTARCTIC PENGUIN	

•  Compute letter frequencies	


 A: 3 !N: 4!
!  T: 2! !R: 1!
!! C: 2! !I: 2!
!! P: 1! !E: 1!
!! G: 1! !U: 1!
!! _: 2!

•  Build tree by recursively creating trees of smallest weighted 
components	


How Many Bits?	

A:  100 x 3 !N:  101 x 4!

! T:  001 x 2 !R: 0000 x 1!
!!C:  010 x 2 !I:  011 x 2!
!!P: 0001 x 1 !E: 1100 x 1!
!!G: 1101 x 1 !U: 1110 x 1!
!!_: 1111 x 2!

•  So total number of bits = 67	


•  Note: There may be multiple possible Huffman trees	

•  All trees should use same total number of bits 	
!

Other Compression Techniques	


•  Examine larger pieces of data for patterns	

•  AAAAA BBBBBBBBB CC AAAAAAA	

•  (5,A) (9,B) (2,C) (7,A)	


•  Lempel-Ziv-Welch (LZW)	

•  Huffman code for longer substrings	


•  ABCABCABC	

–  0-255: ASCII characters	


–  256: AB	


–  257: ABC	


Alternative Tree Representations	


•  Total # “slots” = 4n 	

•  Since each BinaryTree 

maintains a reference to 
left, right, parent, value	


•  Much more overhead than 
vector, SLL, array, …	


•  But trees capture 
successor and predecessor 
relationships that other 
data structures don’t… 	
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Using Arrays to Store Trees	


•  Encode structure of tree in array indexes	

•  Where are children of node i?	

•  Children of node i are at 2i+1 and 2i+2	

•  Look at example	


•  Where is parent of node j?	

•  Parent of node j is at (j-1)/2	


ArrayTree Tradeoffs	


•  Why are ArrayTrees good?	

•  Save space for links 	
	

•  No need for additional memory allocated/garbage 

collected	

•  Works well for full or complete trees	


•  Complete: All levels except last are full and all gaps are at right	

•  “A complete binary tree of height h is a full binary tree with 0 or 

more of the rightmost leaves of level h removed”	


•  Why bad?	

•  Could waste a lot of space	

•  Height of n requires 2n+1-1 array slots even if only O(n) 

elements	



