CSCI 136
Data Structures &
Advanced Programming

Jeannie Albrecht
Lecture 23
April 16,2014

4/16/14

Administrative Details

e Lab 8 is today
* Can work with a partner again
* We'll briefly go over design in lab
¢ Faculty meeting at 4 today
* Looking ahead:
¢ Lab 9 — Darwin, due 5/7 (2 weeks)
* Wed 4/30: Midterm 2 (during lab again)
* One (or two) more labs after that (last one is
probably optional)
» Office hours on Thursday: 2ish — 3:30ish

Last Time

* Looked at ways to prove tree properties using
induction

e Started discussing decision trees

BT Questions/Proofs

* (A) Prove that number of nodes at level n <= 2",
* (B) Prove that number of nodes in tree of height n
is <=20*0— |,
* Base case n=0: Tree of height = 0 only contains root. Thus
only | node when height=0.
¢ 20*D—| = |. Base case holds.
* IH: Assume true for all k<n.
* That is, the number of nodes in tree of height k is <= 20— |
e |IS: Suppose k=n — |. (We will show it holds for k=n.)
« By our IH, we know that the number of nodes is <= 20— |.
* By (A), we also know that the number of nodes at level n <= 2"

 So at height n, the number of nodes in tree is at most (<=)
200+ 20— | =2 x 20— | =20+ |,

Today’s Outline

 Continue discussing decision trees
* Learn about tree traversal

¢ In-order, pre-order, post-order, level-order

* Learn how to implement tree iterators

Recap: Representing Knowledge

* Trees can be used to represent knowledge
* Example: InfiniteQuestions game
* We often call these trees decision trees
¢ Leaf: object
¢ Internal node: question to distinguish objects
¢ Move down decision tree until we reach a leaf node
e Check to see if the leaf is correct

* If not, add another question, make new and old objects
children

Building Decision Trees

* Gather/obtain data
* Run correlation analysis

* Make greedy choices: Find good questions that
divide data into halves (or as close as possible)

* Construct tree with shortest height

* Example

2 large
small \ - ang
Do @A =

4/16/14

Moving on...

Tree Traversals

* In linear structures, there are only a few
logical (useful) ways to traverse the data
structure

e Start at one end and visit each element
¢ Start at the other end and visit each element
* How do we traverse binary trees?

* (At least) four potential mechanisms

Tree Traversals

/+\
* 7
/ N\
2 3

¢ In-order: 2*3+7

¢ Pre-order: +¥237

* Post-order: 23*7+ (look familiar?)
e Level-order: +¥723

+

Tree Traversals ./ \7
/ N\

2 3

* Each node is visited before any children. Visit
node, then each node in left subtree, then each
node in right subtree. (node, left, right)

o +¥237

* Pre-order

¢ In-order

* Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

° 2¥3+7

(Look at “pseudocode”)

7\
* 7
/N
2 3

Tree Traversals

* Post-order
* Each node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)
o 23%7+
* Level-order (not recursive!)
¢ All nodes of level i are visited before nodes of
level i+1. (visit nodes left to right on each level)
o +%723

(Look at “pseudocode”)

Iterators

* We need to provide iterators that implement
the different tree traversal algorithms
* Methods provided by BT class:
e preorderlterator()
* inorderlterator()
* postorderlterator()
¢ levelorderlterator()

4/16/14

PreOrder Iterator

* Basic idea
* Should return elements in same order as
processed by pre-order traversal method
* Recursive method won’t work for iteration, must
phrase in terms of next() and hasNext()
e But we “simulate recursion” with stack
 Maintain list of subtrees left to traverse
* Todo stack: Roots of trees left to process

e Stack is frontier: nodes left to traverse

PreOrder Iterator

e Outline: node - left - right
I. Push root onto todo stack
2. On call to next():
¢ Pop node from stack
e Push right and then left nodes of popped node onto
stack
e Return node’s value
3. On call to hasNext():
¢ return !stack.isEmpty()

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Blue Violet

)

Orange Yellow

Indigo Red

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Blue Violet

7 [Green |

Orange Yellow
8 todo stack

Indigo Red

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\
Blue Violet Blue

Violet

)

Orange Yellow

/\ todo stack

Indigo Red

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
/\
Blue
N
Orange Yellow todo stack
Indigo Red
GB

4/16/14

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
Blue Violet Orange
Yellow
Orange Yellow
/\ todo stack
Indigo Red

GBYV

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green —_
T Indigo
Blue Violet Red
/\ Yellow

Orange / Yellow

todo stack

Red

GBVO

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Blue Violet Red

/\ Yellow

Yellow

todo stack
Indigo

GBVOlI

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
Blue Violet
P
% todo stack
Indigo Red
GBVOIR

PreOrder Iterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Blue Violet

N

Orange Yellow
3 todo stack

Indigo Red

GBVOIRY

Now let’s look at the code...

4/16/14

