
4/16/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 23	

April 16, 2014	

Administrative Details	

•  Lab 8 is today	

•  Can work with a partner again	

•  We’ll briefly go over design in lab 	

•  Faculty meeting at 4 today	

•  Looking ahead:	

•  Lab 9 – Darwin, due 5/7 (2 weeks)	

•  Wed 4/30: Midterm 2 (during lab again)	

•  One (or two) more labs after that (last one is
probably optional)	

•  Office hours on Thursday: 2ish – 3:30ish	

Last Time	

•  Looked at ways to prove tree properties using
induction	

•  Started discussing decision trees	

BT Questions/Proofs	

•  (A) Prove that number of nodes at level n <= 2n.	

•  (B) Prove that number of nodes in tree of height n 	

	

is <= 2(n+1) – 1.	

•  Base case n=0: Tree of height = 0 only contains root. Thus

only 1 node when height=0. 	

•  2(0+1) – 1 = 1. Base case holds.	

•  IH: Assume true for all k<n. 	

•  That is, the number of nodes in tree of height k is <= 2(k+1) – 1	

•  IS: Suppose k=n – 1. (We will show it holds for k=n.)	

•  By our IH, we know that the number of nodes is <= 2(n) – 1. 	

•  By (A), we also know that the number of nodes at level n <= 2n. 	

•  So at height n, the number of nodes in tree is at most (<=)	

	

2(n) + 2(n) – 1 = 2 x 2(n) – 1 = 2(n+1) – 1.	

Today’s Outline	

•  Continue discussing decision trees	

•  Learn about tree traversal	

•  In-order, pre-order, post-order, level-order	

•  Learn how to implement tree iterators	

Recap: Representing Knowledge	

•  Trees can be used to represent knowledge	

•  Example: InfiniteQuestions game	

•  We often call these trees decision trees	

•  Leaf: object	

•  Internal node: question to distinguish objects	

•  Move down decision tree until we reach a leaf node	

•  Check to see if the leaf is correct	

•  If not, add another question, make new and old objects
children	

4/16/14

2

Building Decision Trees	

•  Gather/obtain data	

•  Run correlation analysis	

•  Make greedy choices: Find good questions that

divide data into halves (or as close as possible)	

•  Construct tree with shortest height	

•  Example	

large 	

and 	

yellow	

small	

Moving on…	

Tree Traversals	

•  In linear structures, there are only a few
logical (useful) ways to traverse the data
structure	

•  Start at one end and visit each element	

•  Start at the other end and visit each element	

•  How do we traverse binary trees?	

•  (At least) four potential mechanisms	

+	

7	

*	

3	

2	

Tree Traversals	

•  In-order: 2*3+7	

•  Pre-order: +*237	

•  Post-order: 23*7+ (look familiar?)	

•  Level-order: +*723	

Tree Traversals	

•  Pre-order	

•  Each node is visited before any children. Visit

node, then each node in left subtree, then each
node in right subtree. (node, left, right)	

•  +*237	

•  In-order	

•  Each node is visited after all nodes in left subtree

are visited and before any nodes in right subtree.
(left, node, right)	

•  2*3+7	

+	

7	

*	

3	

2	

(Look at “pseudocode”)	

Tree Traversals	

•  Post-order	

•  Each node is visited after its children are visited.

Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)	

•  23*7+	

•  Level-order (not recursive!)	

•  All nodes of level i are visited before nodes of

level i+1. (visit nodes left to right on each level) 	

•  +*723	

+	

7	

*	

3	

2	

(Look at “pseudocode”)	

4/16/14

3

Iterators	

•  We need to provide iterators that implement
the different tree traversal algorithms	

•  Methods provided by BT class:	

•  preorderIterator()	

•  inorderIterator()	

•  postorderIterator()	

•  levelorderIterator()	

PreOrder Iterator	

•  Basic idea	

•  Should return elements in same order as

processed by pre-order traversal method	

•  Recursive method won’t work for iteration, must
phrase in terms of next() and hasNext()	

•  But we “simulate recursion” with stack	

•  Maintain list of subtrees left to traverse	

•  Todo stack: Roots of trees left to process	

•  Stack is frontier: nodes left to traverse	

PreOrder Iterator	

•  Outline: node - left - right	

1.  Push root onto todo stack	

2.  On call to next():	

•  Pop node from stack	

•  Push right and then left nodes of popped node onto

stack	

•  Return node’s value	

3.  On call to hasNext():	

•  return !stack.isEmpty()	

PreOrder Iterator	

Green	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

Visit node, then each node in left subtree, then
each node in right subtree.	

Green	

PreOrder Iterator	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

Green	

todo stack	

Visit node, then each node in left subtree, then
each node in right subtree.	

PreOrder Iterator	

Green	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

G	

Violet	

todo stack	

Blue	

Visit node, then each node in left subtree, then
each node in right subtree.	

4/16/14

4

PreOrder Iterator	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

G B	

Green	

Violet	

todo stack	

Visit node, then each node in left subtree, then
each node in right subtree.	

PreOrder Iterator	

Green	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

G B V	

Yellow	

todo stack	

Orange	

Visit node, then each node in left subtree, then
each node in right subtree.	

PreOrder Iterator	

Green	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

G B V O	

Yellow	

todo stack	

Red	

Indigo	

Visit node, then each node in left subtree, then
each node in right subtree.	

PreOrder Iterator	

Green	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

G B V O I	

Yellow	

todo stack	

Red	

Visit node, then each node in left subtree, then
each node in right subtree.	

PreOrder Iterator	

Green	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

G B V O I R	

Yellow	

todo stack	

Visit node, then each node in left subtree, then
each node in right subtree.	

PreOrder Iterator	

Green	

Blue	

 Violet	

Indigo	

 Red	

Orange	

 Yellow	

G B V O I R Y	

todo stack	

Visit node, then each node in left subtree, then
each node in right subtree.	

4/16/14

5

Now let’s look at the code…	

