
4/15/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 22	

April 14, 2014	

Administrative Details	

•  Lab 7 due today	

•  Any questions?	

•  Handout: Lab 8 	

•  Ideally you should bring LexiconNode design doc

to lab so we can discuss at beginning	

•  LexiconNode is the recursive data structure	

•  LexiconTrie manipulates LexiconNodes	

•  LexiconNode at root? Use ‘ ‘ (single blank space)

character	

Last Time	

•  Looked at binary expression trees	

•  Began talking about how to implement binary

trees in Java	

•  Defined weird “empty” trees	

•  Defined three constructors	

Today’s Outline	

•  Continue discussing trees	

•  Implement BinaryTree	

•  Prove tree properties	

•  Take a closer look at decision trees	

•  Learn how to traverse trees	

BinaryTree Recap	

•  BinaryTree class	

•  Instance variables	

•  BT parent, BT left, BT right, Object value	

parent 	
	

value	

right	
left	

parent 	
	

value	

right	
left	

parent 	
	

value	

right	
left	

null	

EMPTY	
 EMPTY	
EMPTY	
 EMPTY	

EMPTY != null!	

Implementing BinaryTree	

•  Methods (on board last time – see Ch 12 for more info): 	

•  (All “left” methods have equivalent “right” methods)	

•  public BinaryTree() 	

•  // generates an empty node (EMPTY)	

•  // parent and value are null, left=right=this 	

•  public BinaryTree(E value) 	

•  // generates a tree with a non-null value and two empty (EMPTY) subtrees 	

•  public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right) 	

•  // returns a tree with a non-null value and two subtrees 	

•  public void setLeft(BinaryTree<E> newLeft) 	

•  // sets left subtree to newLeft 	

•  // re-parents newLeft (if not null) by calling newLeft.setParent(this)	

•  protected void setParent(BinaryTree<E> newParent) 	

•  // sets parent subtree to newParent 	

•  // called from setLeft and setRight to keep all “links” consistent 	

4/15/14

2

Implementing BinaryTree	

•  Methods:	

•  public BinaryTree<E> left() 	

•  // returns left subtree	

•  public BinaryTree<E> parent() 	

•  // post: returns reference to parent node, or null 	

•  public boolean isLeftChild() 	

•  // returns true if this is a left child of parent 	

•  public E value() 	

•  // returns value associated with this node 	

•  public void setValue(E value) 	

•  // sets the value associated with this node	

•  public Iterator<E> iterator() 	

•  // returns an in-order iterator of the elements 	

BT Methods	

•  Other useful methods to consider!
•  size(): number of descendants	

•  height(): height of node in tree !
•  Left as an exercise…think about these. How would

they be defined?	

•  An aside: visualizing binary trees	

BT Questions/Proofs	

•  Prove that number of nodes at level n <= 2n.	

•  Prove that number of nodes in tree of height
n is <= 2(n+1)-1.	

Representing Knowledge	

•  Trees can be used to represent knowledge	

•  Example: InfiniteQuestions game	

•  We often call these trees decision trees	

•  Leaf: object	

•  Internal node: question to distinguish objects	

•  Move down decision tree until we reach a leaf node	

•  Check to see if the leaf is correct	

•  If not, add another question, make new and old objects
children	

Decision Trees	

•  Applications	

•  InfiniteQuestions game	

•  Medical diagnosis	

•  Issues with decision trees	

•  How do we pick the right questions?	

•  We want fewest number of questions on average path
through tree, which highest confidence of obtaining
correct answer	

•  What problems occur when we pick the wrong
questions?	

Building Decision Trees	

•  Gather/obtain data	

•  Run correlation analysis	

•  Make greedy choices: Find good questions that

divide data into halves (or as close as possible)	

•  Construct tree with shortest height	

•  Example	

yellow	

