CSCI 136 Data Structures & Advanced Programming

Jeannie Albrecht Lecture 22 April 14, 2014

Administrative Details

- Lab 7 due today
 - Any questions?
- Handout: Lab 8
 - Ideally you should bring LexiconNode design doc to lab so we can discuss at beginning
 - LexiconNode is the recursive data structure
 - LexiconTrie manipulates LexiconNodes
 - LexiconNode at root? Use ' ' (single blank space) character

Last Time

- Looked at binary expression trees
- Began talking about how to implement binary trees in Java
 - Defined weird "empty" trees
 - Defined three constructors

Today's Outline

- Continue discussing trees
 - Implement BinaryTree
 - Prove tree properties
 - Take a closer look at decision trees
 - Learn how to traverse trees

Implementing BinaryTree

Methods:

- public BinaryTree<E> left()
- // returns left subtree
 public BinaryTree<E> parent()
- // post: returns reference to parent node, or null
- public boolean isLeftChild()
 // returns true if this is a left child of parent
- public E value()
- // returns value associated with this node
- public void setValue(E value)
 // sets the value associated with this node
- public Iterator<E> iterator()
- // returns an in-order iterator of the elements

BT Methods

- Other useful methods to consider
 - size(): number of descendants
 - height(): height of node in tree
 - Left as an exercise...think about these. How would they be defined?
- An aside: visualizing binary trees

BT Questions/Proofs

- Prove that number of nodes at level $n \le 2^n$.
- Prove that number of nodes in tree of height n is $\leq 2^{(n+1)}$ -1.

Representing Knowledge

- Trees can be used to represent knowledge
 Example: InfiniteQuestions game
- We often call these trees decision trees
 Leaf: object
 - Internal node: question to distinguish objects
- Move down decision tree until we reach a leaf node
- Check to see if the leaf is correct
- If not, add another question, make new and old objects children

Decision Trees

- Applications
 - InfiniteQuestions game
 - Medical diagnosis
- · Issues with decision trees
 - How do we pick the right questions?
 - We want fewest number of questions on average path through tree, which highest confidence of obtaining correct answer
 - What problems occur when we pick the wrong questions?

Building Decision Trees

- Gather/obtain data
- Run correlation analysis
 - Make greedy choices: Find good questions that divide data into halves (or as close as possible)
- Construct tree with shortest height

