CSCI 136
Data Structures &
Advanced Programming

Jeannie Albrecht
Lecture 21
April 11,2014

411114

Administrative Details

° Lab7
* Due Monday at noon

¢ Questions?

Last Time

¢ Learned about ordered structures (Ch 11)
* Talked about OrderedVector and OrderedList
* Main advantage is that the data is always sorted
* Restrict add method so that objects are always added “in
the right spot”
* Easy to find min, max, median

* Be careful not to use mutable keys!

Today’s Outline

* Begin learning about trees
* Very important data structure!

Data Structures so far...

e So far all data has been stored in a linear fashion
e Stacks, queues
e Even arrays, vectors, SLLs are visualized using linear
structures
* By linear we mean that each element has only
one successor and one predecessor...

[T

Introducing Trees

* A tree is a data structure where elements can
have multiple successors (called children)

* But still only one predecessor (called parent)

4/11/14

Root

“Computer Tree”

Leaves
Family trees
House of Normandy, Battle of Hastings, 1066
William |
Robert William 1l Adela Henry |
Stephen William Matilda
Henry Il

Other Trees

* Phylogenetic tree
¢ Directories of files

¢ Game tree

* Build tree
* Search for moves with high likelihood of winning

* Expression trees (we’ll come back to these in
a bit)

Millions of Years

Pleistocene
Before Present

Miocene Pliocene
5

10
AT T T T T T T

Black Bear
Domestic Dog
Gray Wolf
Coyole
Cape Hunting Dog
Black-Backed Jackal
Bush Dog 3
Maned Wolf
— Hoary Fox
Crab-Eating Fox
Gray Fox
Bat-Eared Fox
Raccoon Dog
Cape Fox
Red Fox
Fennec Fox

Arctic Fox .

spiues
MAl-Hom

spiues
uedpawy
yinos

aMi-xod

spjues

4/11/14

Chordata

% @ | Precert Day
|

Echinodemata

|Parazoa Platghelirthes Mollurca Antheopoda

(7% AN |
[Cridaria Himstedn Aveelida
L N—— -

focoelom

BROSTO!
Coelom frora
¢ digestive tube

Coelom
Phylogenetic
Tree

Animal Kingdom

Bilateral syrametry

True Tisoues

14
~jeannie
www research papers
/\ plush.pdf sword.pdf

index.html csl36

lectures.html handouts.html

X
X
X X
X X
X X
A A A A A A
n " n " n 1\
[[1\ [[!
A\ [[oy [!
1 \ 1 \ 1 \ 1 \ 1 \ 1 \
1 \ 1 \ 1 \ 1 \ 1 \ ! \
! \ 1 \ 1 \ 1 \ 1 \ ! \
1 \ 1 \ I \ ' \ f \ \
X
X 17

Trees in CS 136

* A tree is a data structure where elements can
have multiple successors (but generally only

one predecessor)

Tree Features

* Hierarchical relationship

* Root at the top

e Leaf at the bottom

* Interior nodes in middle

* Parents, children, ancestors, descendants, siblings
* Degree: max number of children per node

* Depth of node n: number of edges from root to n
* Height: max depth (across all nodes)

4/11/14

Binary Trees

Degree of all nodes <=2

Recursive nature of tree

* Base case: Empty

* Rec. case: Root with left and right subtrees (also BTs)
SLL: Recursive nature was captured by elements
(SLLEs) that pointed to other elements (SLLEs)

Binary Tree: No second element class; single
BinaryTree class does it all!

Full vs. Complete

* Full tree — A full binary
tree of height h has
leaves only on level h,
and each internal node
has exactly 2 children.

e Complete tree — A
complete binary tree of
height h is a full tree with
or more rightmost
leaves of level h removed.

All full trees are complete, but not all complete trees are full!

0

Expression Trees

4%2+3 */\
3

AN

4 2

BinaryTree<String> fourTimesTwo =
new BinaryTree<String>(“*",
new BinaryTree<String>(“4"),
new BinaryTree<String>(“2"));

BinaryTree<String> plusTree =
new BinaryTree<String>(“+",
fourTimesTwo,
new BinaryTree<String>(“3"));

Expression Trees

* General strategy
¢ Make a binary tree (BT) for each leaf node
* Move from bottom to top, creating BTs
¢ Eventually reach the root

¢ Call “evaluate” on final BT

* Example
* How do we make a binary expression tree for
((4+3)¥(10-5))12)
* Postfix notation: 43+ 105-*2/

23

public int evaluate(BinaryTree<String> expr) {

if (expr.height() == 0) {
return Integer.parselnt(expr.value());
} else {

int left = evaluate(expr.left());

int right = evaluate(expr.right());
String op = expr.value();

if (op.equals("+")) return left + right;
if (op.equals("-")) return left - right;
if (op.equals("*")) return left * right;
if (op.equals("/")) return left / right;
Assert.fail("Bad op");

return -1; //Why do we need this?

BinaryExpressionTree.java

4/11/14

Implementing BinaryTree . .
P & Y Implementing BinaryTree

* BinaryTree class
o Instance variables * Methods (on board — see Ch 12 for more info):

e (All “left” methods have equivalent “right” methods)

* public BinaryTree()
* [generates an empty node (EMPTY)

¢ BT parent, BT left, BT right, Object value

parent T null * [/ parent and value are null, left=right=this
value * public BinaryTree(E value)
left |right /] generates a tree with a non-null value and two empty (EMPTY) subtrees

« public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
/ \ * [/ returns a tree with a non-null value and two subtrees

P — T * public void setLeft(BinaryTree<E> newLeft)
P: P * /I sets left subtree to newleft
value value /I re-parents newLeft (if not null) by calling newLeft.setParent(this)
EMPTY != null! ,|eft |righ; left |right « protected void setParent(Binary Tree<E> newParent)
’ \ * /[sets parent subtree to newParent
\
EMPTY EMPTY EMPTY EMPTY ¢ // called from setLeft and setRight to keep all “links” consistent

25 26

