CSCI 136 Data Structures & Advanced Programming

Jeannie Albrecht Lecture 21 April 11, 2014

Administrative Details

Lab 7
Due Monday at noon
Questions?

- Last Time
- Learned about ordered structures (Ch 11)
 - Talked about OrderedVector and OrderedList
 - Main advantage is that the data is always sorted
 - Restrict add method so that objects are always added "in the right spot"
 - Easy to find min, max, median
 - Be careful not to use mutable keys!

Today's Outline

Begin learning about trees
Very important data structure!

Introducing Trees

- A tree is a data structure where elements can have multiple successors (called children)
- But still only one predecessor (called parent)

Other Trees

- Phylogenetic tree
- Directories of files
- Game tree
 - Build tree
- Search for moves with high likelihood of winning
- Expression trees (we'll come back to these in a bit)

Tree Features

- Hierarchical relationship
- Root at the top
- Leaf at the bottom
- Interior nodes in middle
- Parents, children, ancestors, descendants, siblings
- Degree: max number of children per node
- Depth of node n: number of edges from root to n
- Height: max depth (across all nodes)

Binary Trees

- Degree of all nodes <= 2
- Recursive nature of tree
 - Base case: Empty
 - Rec. case: Root with left and right subtrees (also BTs)
- SLL: Recursive nature was captured by elements (SLLEs) that pointed to other elements (SLLEs)
- Binary Tree: No second element class; single BinaryTree class does it all!

