
4/11/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 21	

April 11, 2014	

2	

Administrative Details	

•  Lab 7 	

•  Due Monday at noon	

•  Questions?	

3	

Last Time	

•  Learned about ordered structures (Ch 11)	

•  Talked about OrderedVector and OrderedList	

•  Main advantage is that the data is always sorted	

•  Restrict add method so that objects are always added “in
the right spot”	

•  Easy to find min, max, median	

•  Be careful not to use mutable keys! 	

4	

Today’s Outline	

•  Begin learning about trees	

•  Very important data structure!	

5	

Data Structures so far…	

•  So far all data has been stored in a linear fashion	

•  Stacks, queues	

•  Even arrays, vectors, SLLs are visualized using linear

structures	

•  By linear we mean that each element has only
one successor and one predecessor…	

6	

4/11/14

2

7	

Introducing Trees	

•  A tree is a data structure where elements can
have multiple successors (called children)	

•  But still only one predecessor (called parent)	

8	

9	
 10	

Root	

Leaves	

11	

“Computer Tree”	

12	

William I	

Robert	
 William II	
 Adela	
 Henry I	

Stephen	
 William	
 Matilda	

Henry II	

Family trees	

House of Normandy, Battle of Hastings, 1066	

4/11/14

3

13	

Other Trees	

•  Phylogenetic tree	

•  Directories of files	

•  Game tree	

•  Build tree	

•  Search for moves with high likelihood of winning	

•  Expression trees (we’ll come back to these in
a bit)	

14	

15	

~jeannie	

www	

index.html	
 cs136	

lectures.html	
 handouts.html	

research	
 papers	

plush.pdf	
 sword.pdf	
...	

17	

X
X

X

X X
X X

X X

O

O

O

O

O

O

... ...

...

...
X O

X
X
O

18	

Trees in CS 136	

•  A tree is a data structure where elements can
have multiple successors (but generally only
one predecessor)	

4/11/14

4

19	

Tree Features	

•  Hierarchical relationship	

•  Root at the top	

•  Leaf at the bottom	

•  Interior nodes in middle	

•  Parents, children, ancestors, descendants, siblings	

•  Degree: max number of children per node	

•  Depth of node n: number of edges from root to n	

•  Height: max depth (across all nodes)	

20	

Binary Trees	

•  Degree of all nodes <= 2	

•  Recursive nature of tree	

•  Base case: Empty	

•  Rec. case: Root with left and right subtrees (also BTs)	

•  SLL: Recursive nature was captured by elements
(SLLEs) that pointed to other elements (SLLEs)	

•  Binary Tree: No second element class; single
BinaryTree class does it all!	

21	

Full vs. Complete	

•  Full tree – A full binary
tree of height h has
leaves only on level h,
and each internal node
has exactly 2 children.	

•  Complete tree – A
complete binary tree of
height h is a full tree with 0
or more rightmost
leaves of level h removed.	

All full trees are complete, but not all complete trees are full! 	

22	

+	

*	

4	
 2	

3	

4 * 2 + 3	

BinaryTree<String> fourTimesTwo = ���
	
 	
 	
new BinaryTree<String>(“*”, ���
	
 	
 	
new BinaryTree<String>(“4”), ���
	
 	
 	
new BinaryTree<String>(“2”));	

BinaryTree<String> plusTree = 	
 	
 	
 	
 	

	
 	
 	
new BinaryTree<String>(“+”, ���
	
 	
 	
fourTimesTwo, ���
	
 	
 	
new BinaryTree<String>(“3”));	

	

Expression Trees	

23	

Expression Trees	

•  General strategy	

•  Make a binary tree (BT) for each leaf node	

•  Move from bottom to top, creating BTs	

•  Eventually reach the root	

•  Call “evaluate” on final BT	

•  Example 	

•  How do we make a binary expression tree for 	

	
(((4+3)*(10-5))/2)	

•  Postfix notation: 4 3 + 10 5 - * 2 /	

24	

!

public int evaluate(BinaryTree<String> expr) {  
 if (expr.height() == 0) {  

!return Integer.parseInt(expr.value());  
 } else {  

!int left = evaluate(expr.left());  
!int right = evaluate(expr.right());  
!String op = expr.value();  
!if (op.equals("+")) return left + right;  
!if (op.equals("-")) return left - right;  
!if (op.equals("*")) return left * right;  
!if (op.equals("/")) return left / right;  
!Assert.fail("Bad op");  
!return -1; //Why do we need this?  

 }  
}!

!
BinaryExpressionTree.java	

4/11/14

5

25	

Implementing BinaryTree	

•  BinaryTree class	

•  Instance variables	

•  BT parent, BT left, BT right, Object value	

parent 	
	

value	

right	
left	

parent 	
	

value	

right	
left	

parent 	
	

value	

right	
left	

null	

EMPTY	
 EMPTY	
EMPTY	
 EMPTY	

EMPTY != null!	

26	

Implementing BinaryTree	

•  Methods (on board – see Ch 12 for more info): 	

•  (All “left” methods have equivalent “right” methods)	

•  public BinaryTree() 	

•  // generates an empty node (EMPTY)	

•  // parent and value are null, left=right=this 	

•  public BinaryTree(E value) 	

•  // generates a tree with a non-null value and two empty (EMPTY) subtrees 	

•  public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right) 	

•  // returns a tree with a non-null value and two subtrees 	

•  public void setLeft(BinaryTree<E> newLeft) 	

•  // sets left subtree to newLeft 	

•  // re-parents newLeft (if not null) by calling newLeft.setParent(this)	

•  protected void setParent(BinaryTree<E> newParent) 	

•  // sets parent subtree to newParent 	

•  // called from setLeft and setRight to keep all “links” consistent 	

