
1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 2	

Feb 10, 2014	

2	

Administrative Details	

•  Lab 1 handout/PDF	

•  Prelab (should be completed before lab): 	

•  Lab 1 design doc	

•  Use Boggle design doc as model - no real code!	

•  TA hours start on Wed	

3	

Last Time	

•  Hello.java	

•  Write a program that prints “Hello” to the

terminal	

4	

Hello.java	

/*!
 * This program prints out a message to the terminal.!
 */!
public class Hello {!
!
 // Just print a message. Nothing complicated here...!
 public static void main(String args[]) {!
 System.out.println("Hello.");!
 }!
}!
!
!
!

5	

Today’s Outline	

•  Continue Java refresher	

•  Sum.java	

•  Write a program that adds two integers together and
returns the sum	

•  Use command-line args and Scanner	

•  Object-Oriented Program (OOP) Design	

•  Basic concepts	

•  Java-specific features	

6	

Sum1.java	

/*!
 * A program to add together two numbers from command line args.!
 */!
public class Sum1 {!
!
 public static void main(String args[]) {!
 int n = Integer.valueOf(args[0]); !
 int n2 = Integer.valueOf(args[1]);!
 System.out.println("Answer is " + (n+n2));!
 }!
}!
!

2

7	

Sum2.java	

import java.util.Scanner;!
!
/*!
 * A program to add together two numbers from the terminal.!
 */!
public class Sum2 {!
!
 // Create a new Scanner, read in two integers, and print their sum.!
 public static void main(String args[]) {!
!
 // create a new scanner for the terminal input!
 Scanner in = new Scanner(System.in);!
!
 System.out.print("Give me a number: ");!
 int n = in.nextInt();!
 System.out.print("Give me another number: ");!
 int n2 = in.nextInt();!
!
 System.out.println("Answer is " + (n + n2));!
 }!
}!

8	

Object-Oriented Programming	

•  Objects are building blocks of software	

•  Programs are collections of objects	

•  Cooperate to complete tasks	

•  Represent “state” of the program	

•  Communicate by sending messages to each other	

9	

Object-Oriented Programming	

•  Objects can model:	

•  Physical items - Dice, board, dictionary	

•  Concepts - Date, time, words, relationships	

•  Processing - Sort, search, simulate	

•  Objects contain:	

•  Properties (instance variables)	

•  Attributes, relationships to other objects, components	

–  Letter value, grid of letters, number of words	

•  Capabilities (methods)	

•  Accessor and mutator methods	

–  addWord, lookupWord, removeWord	

10	

Sharks and Minnows	

•  Let’s look at an example: WaTor	

•  What objects are being modeled?	

•  Physical items	

•  Concepts	

•  Processing	

•  The shark object contains:	

•  Properties	

•  Capabilities	

11	

Next Up: ���
Implementing a Card Object	

•  Think before we code! 	

•  Start general.	

•  Build an interface that advertises all public features

of a card	

•  Not an implementation (define methods, but don’t

include code)	

•  Then get specific.	

•  Build specific implementation of a card using our

general card interface 	

12	

Start General: CardInterface	

•  What data do we have to represent?	

•  Properties of cards	

•  How can we represent these properties?	

•  What methods do we need?	

•  Capabilities of cards 	

•  Do we need accessor and mutator methods?	

*	

