
4/7/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 19	

April 7, 2014	

	

2	

Administrative Details	

•  Lab 6 due tomorrow	

•  At least one TA will be around tonight (probably around 8ish)	

•  134 will be in the main lab	

•  Handout: Lab 7 	

•  You’ll get Midterm 1 back in a bit	

•  Looking ahead	

•  Labs 8 and 9 are the most challenging (but fun!) labs of the semester	

•  Midterm 2 is April 30	

•  Check for conflicts and let me know!	

3	

Last Time	

•  Finished discussing queues	

•  Talked about how queues are used in network

routers for buffering packets	

4	

Today’s Outline	

•  Begin discussing iterators (Ch 8)	

•  Maybe begin thinking about ordered structures

(Ch 11)	

•  FYI, we have now covered Chapters 1-11	

5	

Review: ���
Common Structure Operations	

•  size()!
•  isEmpty()!
•  add()!
•  remove()!
•  clear()!
•  contains()!

•  What’s missing?	

•  Method for efficient data traversal!
•  iterator()!

6	

Visiting Data from Structure	

•  Write a method (numOccurs) that counts the
number of times a particular Object appears
in a structure	

•  Does this work on all structures (that we
have studied so far)?	

public int numOccurs (List data, Object o) {!
 int count = 0; !
 for (int i=0; i<data.size(); i++) {!
 Object obj = data.get(i);!
 if (obj.equals(o)) count++;!
 }!
 return count;!
}!

4/7/14

2

7	

Problems	

•  get() not defined on Linear structures (i.e.,
stacks and queues)	

•  get() is “slow” on some structures	

•  O(n) on SLL (and DLL)	

•  So numOccurs = O(n2)	

•  How do we process data in structures in a
general, efficient way?	

•  Must be data structure-specific for efficiency	

•  Must always use some interface to make general	

8	

Iterators	

•  Iterators provide us with a way to
efficiently cycle through elements of a data
structure 	

•  An Iterator:	

•  Provides generic methods to traverse elements	

•  Abstracts away details of how to access structure	

•  Uses different implementations for each structure	

•  As usual, we use both an Iterator interface
and an AbstractIterator class	

9	

Implementations	

•  Iterator interface defines next(), hasNext(), and reset()
(remove() is actually optional)	

•  Works for all structures!	

•  All specific implementations in structure5 extend
AbstractIterator (which implements Iterator)	

•  http://www.cs.williams.edu/~jeannie/cs136/javadoc/structure5/structure5/AbstractIterator.html	

•  We need to define the methods labeled “abstract” for each
data structure (i.e., get(), next(), hasNext(), and reset())	

•  Methods are specialized for specific data structures	

•  Example: SLL	

10	

public class SinglyLinkedListIterator extends AbstractIterator {!
!
 protected SinglyLinkedListElement head, current;!
!
 public SinglyLinkedListIterator(SinglyLinkedListElement head) {!

!this.head = head;!
!reset();!

 }!
!
 public void reset() {!

!current = head;!
 }!
!
 public Object next() {!

!Object value = current.value();!
!current = current.next();!
!return value;!

 }!
!
 public boolean hasNext() {!

!return current != null;!
 }!
!
 public Object get() {!

!return current.value();!
 }!
!
}!

public Iterator iterator() {!
 return new SinglyLinkedListIterator(head);!
}!

In SinglyLinkedList.java:	

11	

Rewriting numOccurs	

public int numOccurs (List data, Object o) {!
 int count = 0;!
 Iterator iter = data.iterator();!
 while (iter.hasNext()) {!
 if(o.equals(iter.next()) count++;!
 }!
 return count;!
}!
!

12	

More Iterator Examples	

•  How would we implement VectorIterator?	

•  How about StackArrayIterator?	

•  Do we go from bottom to top, or top to bottom?	

•  Doesn’t matter! We just have to be consistent…	

•  We can also make “specialized iterators” (we’ll
look at these next time…)	

•  Another SLL Example (SpecialIterator.java)	

•  TestIterator.java	

4/7/14

3

13	

General Rules for Iterators	

1.  Understand order of data structure	

2.  Always call hasNext() before calling next()!!!	

3.  Never change underlying data structure while iterating

over it 	

•  Take away messages:	

•  Iterator objects capture state of traversal	

•  They have access to internal data representations	

•  Should be fast and easy to use	

