
3/20/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 17	

March 19, 2014	

Administrative Details	

•  Lab 6 is today	

•  Can work with a partner again 	

•  Due Tuesday after break	

•  Not sure about TA availability on Sunday and

Monday after spring break (I’ll try to find out)	

Last Time	

•  Began discussing stacks	

•  Learned about infix and postfix	

•  Talked about how stacks can be used to solve

mazes	

Today’s Outline	

•  Finish up stacks	

•  Learn about queues	

Implementing Maze	

•  Iteratively: Maze.java	

•  Recursively: RecMaze.java	

•  Recursive methods keep an implicit stack	

•  Each recursive call adds another layer to the stack	

	

Maze Solver (iterative)	

 public boolean solve(Maze maze) {!
 Stack<Position> path = new StackList<Position>(); !
!
 Position current = maze.start(); !
 maze.visit(current);!
 path.push(current);!
!
 while (!path.empty() && !path.peek().equals(maze.finish())) {!
 Position next = nextAdjacent(maze, path.peek()); !
 if (next != null) {!
 maze.visit(next);!
 path.push(next);!
 } else {!
 // No adjacent positions left to try.!
 // Pop position and pick up path on previous.!
 path.pop();!
 }!
 }!
 if (!path.empty()) { !
 System.out.println(path);!
 ! ! }!
 return !path.empty();!
 }!
!

3/20/14

2

Maze Solver (recursive)	

 public boolean solve(Maze maze, Position current) {!
!
!
 !
 maze.visit(current);!
 !
 if (current.equals(maze.finish())) { return true; }!
 !
 else {!
! ! Position next = nextAdjacent(maze, current); !

 while (next != null && !solve(maze, next)) {!
! ! next = nextAdjacent(maze, current);!

 }!
 } !
! return next != null;!

 }!
!

Implementing Maze	

•  Iteratively: Maze.java	

•  Recursively: RecMaze.java	

•  Recursive methods keep an implicit stack	

•  Each recursive call adds another layer to the stack	

•  Where should we print our path?	

•  Question: What is the worst/average Big-O
runtime of our maze solver?	

Maze Solver (recursive)	

 public boolean solve(Maze maze, Position current) {!
!
!
 !
 maze.visit(current);!
 !
 if (current.equals(maze.finish())) { return true; }!
 !
 else {!
! ! Position next = nextAdjacent(maze, current); !

 while (next != null && !solve(maze, next)) {!
! ! next = nextAdjacent(maze, current);!

 }!
! ! if (next!=null) {!

 System.out.print(next+" ");!
 }!
!
 } !
! return next != null;!

 }!
!

Method Call Stacks	

•  In JVM, need to keep track of method calls	

•  JVM maintains stack of method invocations (called

frames)	

•  Stack of frames	

•  Receiver object, parameters, local variables	

•  On method call	

•  Push new frame, fill in parameters, run code	

•  Exceptions print out stack	

•  Example: StackEx.java	

•  Recursive calls recurse too far: StackOverflowException	

•  Overflow.java (from last class)	

•  Recursive call stacks: factorial.java (from last class)	

Stacks vs. Queues	

•  Stacks are LIFO (Last In First Out)	

•  Methods: push, pop, peek, empty	

•  Used for:	

•  Evaluating expressions (postfix)	

•  Solving mazes	

•  Evaluating postscript	

•  JVM method calls	

•  Queues are FIFO (First In First Out)	

•  Another linear data structure (implements Linear interface)	

•  Queue interface methods: enqueue (add), dequeue (remove),

getFirst (get), peek (get)	

tail	
 head	

Queues	

•  Examples:	

•  Lines at movie theater, grocery store, etc	

•  OS event queue (keeps keystrokes in order)	

•  Printers	

•  Routing network traffic (more on this later)	

3/20/14

3

Queue Interface	

public interface Queue<E> extends Linear<E> {!
!public void enqueue(E item);!
!public E dequeue();!
!public E getFirst(); //value not removed!
!public E peek(); //same as get()!
}!

Implementing Queues	

Like Stacks, we have a three options:	

1.  QueueVector	

!class QueueVector<E> implements Queue<E> {!
!protected Vector<E> data;!

}!

2.  QueueList	

!class QueueList<E> implements Queue<E> {!

!protected List<E> data; //uses a CircularList!
}!

3.  QueueArray	

!class QueueArray<E> implements Queue<E> {!

!protected Object[] data; //can’t declare E[]!
!int head; !
!int count;!

}!
!

Tradeoffs:	

•  QueueVector:	

•  enqueue is O(1) (but O(n) in worst case - ensureCapacity)	

•  dequeue is O(n)	

•  QueueList:	

•  enqueue is O(1) (addFirst)	

•  dequeue is O(1) (DLL/CLL removeLast)	

•  QueueArray:	

•  enqueue is O(1)	

•  dequeue is O(1)	

•  Faster operations, but limited size	

QueueArray	

•  Let’s look at an example…	

•  How to implement? (on board)	

•  enqueue(item), dequeue(), size()	

tail	
head	

A B

tail	
head	

A B C

tail	
 head	

B C

en
qu

eu
e(

C
)	

de
qu

eu
e(

)	

head points to front of

queue; tail points to next
empty space (where next

item will be added)	

head and tail “wrap
around” array;

when queue is full,
head == tail	

After wrap around,
head > tail in some

cases!	

public class queueArray<E> { !
 !
 protected Object[] data;!
 protected int head;!
 protected int count;!
!
 public queueArray(int size) {!

!data = new Object[size];!
 }!
 !
 public void enqueue(E item) {!
 Assert.pre(count<data.length,”Queue is full.");!
 int tail = (head + count) % data.length;!
 data[tail] = item;!
 count++;!
 }!
 !
 public E dequeue() {!

!Assert.pre(count>0,"The queue is empty.");!
!E value = (E)data[head];!
!data[head] = null;!
!head = (head + 1) % data.length;!
!count--;!
!return value;!

 }!
 !
 public boolean empty() {!

!return count>0;!
 }!

