CSCI 136
Data Structures &
Advanced Programming

Jeannie Albrecht
Lecture 16
March 17,2014

3/17/14

Administrative Details

* Handout: Lab 6
* You may work with a partner again this week

* Due after break (but do yourself a favor and finish this
week!)
* Due TUESDAY instead of Monday
* But watch out for 134 conflicts on Monday night
* Also no 136 TAs on duty on Mondays
* But | have office hours on Monday afternoon

* You'll get Labs 3 and 4 back on Wed in lab
* You'll get midterm back after break

Last Time

* Learned about DoublyLinkedLists
e Started talking about stacks

Today’s Outline

Continue discussing stacks
* Learn about infix and postfix

Talk about how stacks can be used to solve
mazes

Note about Stack Implementations

e structure5.StackArray
* int top, Object data[] + all operations are O(l)
¢ Add/remove from index top — wasted/run out of space

e structure5.StackVector
¢ Vector data
¢ Add/remove from tail

+/— most ops are O(l) (add
is O(n) in worst case)

— wasted space
e structure5.StackList
o SLL data + all operations are O(I)

¢ Add/remove from head +/— O(n) space overhead

Note about Terminology

* When using stacks:

* pop = remove
* push = add
* peek = get

* In Stack interface, pop/push/peek methods call

add/remove/get methods that are defined in
Linear interface

* But add does not really exist in Stack interface

(it is inherited from Linear)

Recall:
Evaluating Arithmetic Expressions

» Computer processes use stacks to evaluate
arithmetic expressions
* Example: x*y+z
* First rewrite as xy*z+
* Then:
* push x
* pushy
* mult (pop twice, multiply, push result)
* pushz

* add (pop twice, add, push result)

3/17/14

Converting Expressions

* We (i.e., humans) primarily use “infix” notation to
evaluate expressions
° (xty)z

* Computers use “postfix” (also called Reverse Polish)
notation
o xytz*
* Operators appear after operands, parentheses not

necessary

¢ How do we convert between the two?
* Compilers do this for us

Converting Expressions

* Example: x*y+z*w
e Conversion
1) Add full parentheses to preserve order of
operations
(<Fy)+(z*w)
2) Move all operators (+-*/) after operands
Oy @w)+
3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:
* Read the next token from input.
* If the token is a value, push it onto the stack.
* Else, the token is an operator that takes n arguments.
 (Itis known a priori that the operator takes n arguments.)
« If there are fewer than n values on the stack — error.
« Else, pop the top n values from the stack.
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.
¢ If there is only one value on the stack, that value is the
result of the calculation.
* Else if there are more values in the stack w/o operators,
there are too many input values — error.

Example

¢ GYHEIW) > xytw

* Evaluate:

Push x

Push y

Mult (Pop y, Pop x, Push x*y)

Push z

Push w

Mult (Pop w, Pop z, Push z*w)

Add (Pop x*y, Pop z*w, Push (x*y)+(z*w))
One value left, so we’re done.

Mazes

¢ How can we use a stack to solve a maze?

* Properties of mazes:

* A maze is simply a matrix of cells

e There is a start cell and finish cell

* Want to find a path of adjacent cells between start and finish
* Strategy: Consider unvisited cells as “potential tasks”

e Use linear structure (stack) to keep track of outstanding
tasks (i.e., unvisited cells that are adjacent to visited cells)

Solving Mazes

* We'll use two classes to solve our maze:
* Position
* Maze

* General strategy:
* Use stack to keep track of path from start

¢ If we hit a dead end, backtrack by popping
location off stack

¢ Leave “bread crumbs” to make sure we don’t visit
the same place twice

3/17/14

Backtracking Search

Try one way (favor north and east)

If we get stuck, go back and try a different way

We will eventually either find a solution or
exhaust all possibilities

Also called a “depth first search”

Lots of other algorithms that we will not
explore:

Position class

* Represent position in maze as (X,y) coordinate

e class Position has 5 relevant methods:
e Position getNorth()
e Position getSouth()
e Position getEast()

Position getWest()

boolean equals()

Maze class

* Relevant Maze methods:
¢ Maze(String filename)
« Constructor; takes file describing maze as input
¢ void visit(Position p)
* Visit position p in maze
boolean isVisited(Position p)

* Returns true iff p has been visited before
Position start()

* Return start position
¢ Position finish()
* Return finish position
* boolean isClear(Position p)

* Returns true iff p is a valid move and is not a wall

Implementing Maze

* Iteratively: Maze.java
* Recursively: RecMaze.java
* Recursive methods keep an implicit stack
* Each recursive call adds another layer to the stack

Method Call Stacks

In JVM, need to keep track of method calls

JVM maintains stack of method invocations (called
frames)

Stack of frames

* Receiver object, parameters, local variables
On method call

* Push new frame, fill in parameters, run code
Exceptions print out stack

Example: StackEx.java

Recursive calls recurse too far: StackOverflowException
¢ Overflow.java

3/17/14

Recursive Call Stacks

public static long factorial(int n) {
if (n <= 1) // base case
return 1;
else

return n * factorial(n - 1);

public static void main(String args[]) {
System.out.println(factorial(3)};

