
3/17/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 16	

March 17, 2014	

Administrative Details	

•  Handout: Lab 6	

•  You may work with a partner again this week	

•  Due after break (but do yourself a favor and finish this
week!)	

•  Due TUESDAY instead of Monday 	

•  But watch out for 134 conflicts on Monday night	

•  Also no 136 TAs on duty on Mondays 	

•  But I have office hours on Monday afternoon	

•  You’ll get Labs 3 and 4 back on Wed in lab	

•  You’ll get midterm back after break	

	

Last Time	

•  Learned about DoublyLinkedLists	

•  Started talking about stacks	

Today’s Outline	

•  Continue discussing stacks	

•  Learn about infix and postfix	

•  Talk about how stacks can be used to solve

mazes	

Note about Stack Implementations	

•  structure5.StackArray	

•  int top, Object data[]	

•  Add/remove from index top	

•  structure5.StackVector	

•  Vector data	

•  Add/remove from tail	

•  structure5.StackList	

•  SLL data	

•  Add/remove from head	

+ all operations are O(1)	

– wasted/run out of space	

+/– most ops are O(1) (add
is O(n) in worst case)	

– wasted space	

+ all operations are O(1)	

+/– O(n) space overhead	

Note about Terminology	

•  When using stacks:	

•  pop = remove	

•  push = add	

•  peek = get	

•  In Stack interface, pop/push/peek methods call
add/remove/get methods that are defined in
Linear interface	

•  But add does not really exist in Stack interface
(it is inherited from Linear)	

3/17/14

2

Recall: ���
Evaluating Arithmetic Expressions	

•  Computer processes use stacks to evaluate

arithmetic expressions	

•  Example: x*y+z	

•  First rewrite as xy*z+	

•  Then:	

•  push x	

•  push y	

•  mult (pop twice, multiply, push result)	

•  push z	

•  add (pop twice, add, push result)	

Converting Expressions	

•  We (i.e., humans) primarily use “infix” notation to
evaluate expressions	

•  (x+y)*z	

•  Computers use “postfix” (also called Reverse Polish)
notation	

•  xy+z*	

•  Operators appear after operands, parentheses not
necessary	

•  How do we convert between the two?	

•  Compilers do this for us	

Converting Expressions	

•  Example: x*y+z*w	

•  Conversion	

1)  Add full parentheses to preserve order of
operations	

(x*y)+(z*w)	

2)  Move all operators (+-*/) after operands	

	

(xy*)(zw*)+	

3)  Remove parentheses	

	

xy*zw*+	

Use Stack to Evaluate Postfix Exp	

•  While there are input “tokens” (i.e., symbols) left:	

•  Read the next token from input.	

•  If the token is a value, push it onto the stack.	

•  Else, the token is an operator that takes n arguments.	

•  (It is known a priori that the operator takes n arguments.)	

•  If there are fewer than n values on the stack → error.	

•  Else, pop the top n values from the stack.	

–  Evaluate the operator, with the values as arguments.	

–  Push the returned result, if any, back onto the stack.	

•  If there is only one value on the stack, that value is the
result of the calculation.	

•  Else if there are more values in the stack w/o operators,
there are too many input values → error. 	

Example	

•  (x*y)+(z*w) -> xy*zw*+	

•  Evaluate:	

•  Push x	

•  Push y	

•  Mult (Pop y, Pop x, Push x*y)	

•  Push z	

•  Push w	

•  Mult (Pop w, Pop z, Push z*w)	

•  Add (Pop x*y, Pop z*w, Push (x*y)+(z*w))	

•  One value left, so we’re done.	

Mazes	

•  How can we use a stack to solve a maze?	

•  http://www.cs.williams.edu/~jeannie/cs136/lectures/lecture15/Kim/index.html	

•  Properties of mazes:	

•  A maze is simply a matrix of cells 	

•  There is a start cell and finish cell	

•  Want to find a path of adjacent cells between start and finish	

•  Strategy: Consider unvisited cells as “potential tasks”	

•  Use linear structure (stack) to keep track of outstanding

tasks (i.e., unvisited cells that are adjacent to visited cells)	

3/17/14

3

Solving Mazes	

•  We’ll use two classes to solve our maze:	

•  Position	

•  Maze	

•  General strategy:	

•  Use stack to keep track of path from start	

•  If we hit a dead end, backtrack by popping

location off stack	

•  Leave “bread crumbs” to make sure we don’t visit

the same place twice	

Backtracking Search	

•  Try one way (favor north and east)	

•  If we get stuck, go back and try a different way	

•  We will eventually either find a solution or

exhaust all possibilities	

•  Also called a “depth first search”	

•  Lots of other algorithms that we will not
explore: http://www.astrolog.org/labyrnth/algrithm.htm	

Position class	

•  Represent position in maze as (x,y) coordinate	

•  class Position has 5 relevant methods:	

•  Position getNorth()!
•  Position getSouth()!
•  Position getEast()!
•  Position getWest()!
•  boolean equals()!

Maze class	

•  Relevant Maze methods:	

•  Maze(String filename)	

•  Constructor; takes file describing maze as input 	

•  void visit(Position p)!
•  Visit position p in maze	

•  boolean isVisited(Position p)	

•  Returns true iff p has been visited before	

•  Position start()!
•  Return start position	

•  Position finish()	

•  Return finish position	

•  boolean isClear(Position p)!
•  Returns true iff p is a valid move and is not a wall	

Implementing Maze	

•  Iteratively: Maze.java	

•  Recursively: RecMaze.java	

•  Recursive methods keep an implicit stack	

•  Each recursive call adds another layer to the stack	

Method Call Stacks	

•  In JVM, need to keep track of method calls	

•  JVM maintains stack of method invocations (called

frames)	

•  Stack of frames	

•  Receiver object, parameters, local variables	

•  On method call	

•  Push new frame, fill in parameters, run code	

•  Exceptions print out stack	

•  Example: StackEx.java	

•  Recursive calls recurse too far: StackOverflowException	

•  Overflow.java	

3/17/14

4

Recursive Call Stacks	

public static long factorial(int n) { !
!if (n <= 1) // base case !
! !return 1; !
!else !
! !return n * factorial(n - 1); !

} !
!
public static void main(String args[]) {!
!System.out.println(factorial(3)};!

}!

