
3/16/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 15	

March 14, 2014	

Administrative Details	

•  Midterm 1	

•  Please don’t discuss yet!	

•  Probably won’t get them back until after break… 	

•  Labs 3 and 4 are graded	

•  You’ll get them back during lab next week 	

•  Lab 6 will be posted soon (in case you want to
get a head start)	

2	

Last Time	

•  Started talking about SinglyLinkedLists and
SinglyLinkedListElements	

3	

Today’s Outline	

•  Wrap up SinglyLinkedLists	

•  Briefly discuss DoublyLinkedLists	

•  Begin learning about our next class of data

structures: stacks and queues	

•  You’ll use a stack in lab next week…	

4	

•  How would we implement SinglyLinkedListElement?	

•  SinglyLinkedListElement = SLLE in my notes	

•  SLLE = Node in the book (in Ch 9)	

•  (previous slide)	

•  How about SinglyLinkedList?	

•  SinglyLinkedList = SLL in my notes	

•  (implement on board)	

•  What would addFirst(E value) look like? (on board)	

•  getFirst()? (on board)	

•  addLast(E value)? getLast()? (see next slide)	

Recap: SinglyLinkedLists	

value	

nextElement	

head	

(count = 3)	

5	

public void addLast(E value) {!
 count++;!
!
 //two cases to consider: empty list, or non-empty list!
 //case 1: empty list!
 if (head == null) {!
 head = new SLLE<E>(value);!
 }!
!
 //case 2: non-empty list. Must follow “next” pointers to tail!
 else {!
 //”finger” is pointer to possible tail!
 SLLE<E> finger = head;!
 while (finger.next() != null) { !
 //keep following next pointers until you find the tail!
 finger = finger.next();!
 }!
 !

!//finger is now pointing to the tail. Add new element to it!
 finger.setNext(new SLLE<E>(value));!
 }!
}!
!
public E getLast() {!
 SLLE<E> finger = head;!
 //keep following next pointers until you find the tail!
 while (finger != null && finger.next() != null) {!
 finger = finger.next();!
 }!
 return finger.value();!
}!

6	

3/16/14

2

More SLL Methods	

•  How would we implement:	

•  get(int index), set(E value, int index)	

•  add(E value, int index), remove(int index)	

•  removeLast() is just remove(size() - 1)	

•  removeFirst() is just remove(0)	

•  Left as an exercise:	

•  contains(E value)	

•  clear()	

	

7	

Get and Set	

public E get(int index) {!
!Assert.pre(index < size() - 1, “Index out of range”);!

!
!SLLE<E> finger = head;!
!for (int i=0; i<index; i++){ !
! !finger = finger.next();!
!}!
!return finger.value();!

}!
!
public E set(E value, int index) {!
!Assert.pre(index < size() - 1, “Index out of range”);!

!
!SLLE<E> finger = head;!
!for (int i=0; i<index; i++){ !
! !finger = finger.next();!
!}!
!E old = finger.value();!
!finger.setValue(value);!
!return old;!

}! 8	

public void add(E value, int index) {!
!Assert.pre(index <= size(), “Invalid index”);!
!E old;!

!
!if (index==0) { addFirst(value); }!

!
!else if (index==size()) { addLast(value); }!

!
!else {!
! !SLLE<E> finger = head;!
! !SLLE<E> previous = null;!
! !for (int i=0; i<index; i++) { !
! ! previous = finger;!
! ! finger = finger.next();!
! !}!
! !SLLE<E> elem = new SLLE<E>(value, finger);!
! !previous.setNext(elem);!
! !count++;!
!}!

}!

Add	

dog	

add(“dog”, 1);	

previous	
 finger	

head	

(count=3)	

Remove	

public E remove(int index) {!
!Assert.pre(index < size() - 1, “Invalid index”);!
!E old;!

!
!if (index==0) {!
! !old = head.value();!
! !head = head.next();!
! !count--;!
! !return old;!
!}!

!
!else {!
! !SLLE<E> finger = head;!
! !for (int i=0; i<index - 1; i++) { //stop one before index!!
! ! !finger = finger.next();!
! !}!
! !old = finger.next.value();!
! !finger.setNext(finger.next().next());!
! !count--;!
! !return old;!
!}!

}!
10	

Linked Lists Summary	

•  Recursive data structures used for storing data	

•  Waste less space than vectors	

•  Why?	

•  Because they are not implemented using arrays	

•  Easy to add objects to front of list	

•  Components of SLL:	

•  head, elementCount	

•  Components of SLLE:	

•  next, value	

11	

Vectors vs. SLL ���
(Big-O runtime for Object o, int i)	

Operation	
 Vector	
 SLL	

size()	
 O(1)	
 O(1)	

addLast(o)	
 O(1) or O(n)(if resize)	
 O(n)	

removeLast()	
 O(1)	
 O(n)	

getLast()	
 O(1)	
 O(n)	

addFirst(o)	
 O(n)	
 O(1)	

removeFirst()	
 O(n)	
 O(1)	

getFirst()	
 O(1)	
 O(1)	

get(i)	
 O(1)	
 O(n)	

set(i, o)	
 O(1)	
 O(n)	

remove(i)	
 O(n)	
 O(n)	

contains(o)	
 O(n)	
 O(n)	

remove(o)	
 O(n)	
 O(n)	
 12	

3/16/14

3

SLL Summary	

•  SLLs provide methods for efficiently modifying front
of list	

•  Modifying tail/middle of list is not quite as efficient	

•  SLL runtimes are consistent	

•  No hidden costs like Vector.ensureCapacity()	

•  Avg and worst case are always the same	

•  Space usage	

•  No empty slots like vectors	

•  But keep extra reference for each value: O(n) overhead

(but this is constant and predictable)	

13	

Food for Thought: ���
SLL Traversal	

•  We need a way to iterate through Lists	

for (int i=0; i<list.size(); i++) {!
!System.out.println(list.get(i));!
}	

•  What is runtime for Vectors? 	

•  For SLL this is O(n2)! (Why?)	

•  We’ll learn about iterators soon…	

•  Iterators provide O(n) traversal of SLLs	

•  For now, suppose we just want to efficiently
access head and tail of list	
 14	

SLL Improvements to Tail Ops	

•  We want to improve SLLs so tail ops are not O(n)	

•  In addition to SLLE head and int elementCount, add SLLE tail

reference (instance variable) to SLL class	

•  Result	

•  addLast is O(1), getLast is O(1)	

•  removeLast is…	

•  …still O(n)!	

•  We need to know element before tail so we can reset tail pointer	

•  Side effects	

•  We now have three cases to consider in method implementations:

empty list, head == tail, head != tail	

•  Think about addFirst(Object d) and addLast(Object d)	

15	

DoublyLinkedLists	

•  Keep reference/links in both directions 	

•  previous and next	

•  DoubleLinkedListElement instance variables	

•  DLLE next, DLLE prev, Object value	

•  Space overhead is still O(n)	

•  ALL operations on tail (including removeLast) are O(1)!	

•  Additional complexity in each list operation	

•  Example: add(Object d, int index)	

•  Four cases to consider now: empty list, add to front, add to

tail, add in middle	

16	

List (SLL/Vector) Final Summary	

•  addFirst, removeFirst	

•  addLast, removeLast	

•  get/set	

•  contains	

•  Bottom line:	

•  Choose list implementation based on needs of

application!	

17	

Moving on…	

18	

3/16/14

4

Linear Structures	

•  What if we want to impose an ordering to
our lists?	

•  I.e., provide only one way to add and remove
elements from list	

•  No longer provide access to middle	

•  Order of removal depends on the order
elements were added	

•  LIFO: Last In First Out	

•  FIFO: First In First Out 	

19	

Examples	

•  FIFO	

•  Line (queue) at grocery store	

•  Line at dining hall (hopefully)	

•  LIFO	

•  Stack of trays at dining hall	

•  Stack of cups	

•  Deck of cards	

20	

Linear Interface	

•  We need another interface!	

•  Should have less methods than List interface since we

are limiting access a bit…	

•  Methods:	

•  add(E value) - Add a value to the structure.	

•  boolean empty() - Returns true iff the structure is

empty.	

•  E get() - Preview the next object to be removed.	

•  E remove() – Remove the next value from the

structure.	

•  int size() - Returns the number of elements in the

linear structure.	

21	

Linear Structures	

•  No “random access” to list elements!	

•  This means no access to middle of list	

•  More restrictive than general List structures	

•  More implementation freedom	

•  More efficient for some uses	

•  More choices to think about when building our

programs	

22	

Stacks	

•  Examples: stack of trays, stack of cups	

•  People can only take trays/cups from top of stack	

•  What methods do we need to define?	

•  Stack interface methods	

•  New terms: push, pop, peek	

•  Only use push, pop, peek when talking about stacks	

•  Push = add to top of stack	

•  Pop = remove from top of stack	

•  Peek = look at top of stack (do not remove)	

23	

Note about Terminology	

•  When using stacks:	

•  pop = remove	

•  push = add	

•  peek = get	

•  In Stack interface, pop/push/peek methods call add/
remove/get methods that are defined in Linear
interface	

•  But “add” does not exist in Stack interface (it is
inherited from Linear)	

•  Stack interface extends Linear interface	

•  Interfaces extend other interfaces	

•  Classes implement interfaces	
 24	

3/16/14

5

Stack Implementations	

•  Stack array 	

•  int top, Object data[]	

•  Add/remove from index top	

•  Stack Vector	

•  Vector data	

•  Add/remove from tail	

•  Stack List	

•  SLL data	

•  Add/remove from head	

+ all operations are O(1)	

– wasted/run out of space	

+/– most ops are O(1) (add
is O(n) in worst case)	

– potentially wasted space	

+ all operations are O(1)	

+/– O(n) space overhead 	

 (no “wasted” space)	
 25	

Stack Implementations	

•  structure5.StackArray	

•  int top, Object data[]	

•  Add/remove from index top	

•  structure5.StackVector	

•  Vector data	

•  Add/remove from tail	

•  structure5.StackList	

•  SLL data	

•  Add/remove from head	

+ all operations are O(1)	

– wasted/run out of space	

+/– most ops are O(1) (add
is O(n) in worst case)	

– potentially wasted space	

+ all operations are O(1)	

+/– O(n) space overhead 	

 (no “wasted” space)	
 26	

Evaluating Arithmetic Expressions	

•  Computer processes use stacks to evaluate
arithmetic expressions	

•  Example: x*y+z	

•  First rewrite as xy*z+ (we’ll look at this rewriting

process in more detail soon)	

•  Then:	

•  push x	

•  push y	

•  mult (pop twice, multiply, push result)	

•  push z	

•  add (pop twice, add, push result)	

27	

