
3/10/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 13	

March 10, 2014	

2	

Administrative Details	

•  Lab 4 due today	

•  Midterm on Wednesday at 1pm in Wege	

•  You’ll have ~120 minutes to complete exam (designed for 90 minutes)	

•  Review session tomorrow night: 9:30pm-10:30pm - TCL 202	

•  Covers book, lab, lecture material through today	

•  Closed book and notes	

•  Study guide posted on Handouts page	

•  Optional Lab 5 will be posted later today	

•  No TAs this week	

•  Sample exam (and solns) posted on Handouts page	

•  I’ll be in my office from 1:30 – 3:00 today and during lecture
time on Wednesday	

•  No class on Wednesday!	

3	

Last Time	

•  (Almost) finished discussing sorting 	
	

•  BubbleSort, InsertionSort, SelectionSort – O(n2)	

•  MergeSort – O(n log n)	

4	

Today’s Outline	

•  Wrap up QuickSort	

•  Begin learning about Lists 	

5	

Recall Merge Sort = O(n log n)	

•  [8 	
14 	
29 	
1 	
17 	
39 	
16 	
9] 	
	

•  [8 	
14 	
29 	
1] 	
[17 	
39 	
16 	
9] split	

•  [8 	
14] 	
[29 	
1] 	
[17 	
39] 	
[16 	
9] split	

•  [8] 	
[14] 	
[29] 	
[1] 	
[17] 	
[39] 	
[16] 	
[9] split	

•  [8 	
14] 	
[1 	
29] 	
[17 	
39] 	
[9 	
16] merge	

•  [1 	
8 	
14 	
29] 	
[9 	
16 	
17 	
39] merge	

•  [1 	
8 	
9 	
14 	
16 	
17 	
29 	
39] merge	

log n	

log n	

merge takes at most n comparisons per line	

6	

Quick Sort	

•  Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space	

Merge Sort	
 Quick Sort	

Split list in half	
 Split list into sublists	

Sort halves	
 Sort sublists	

Merge halves 	
 Combine sorted sublists	

3/10/14

2

7	

Recall Merge Sort	

private static void mergeSortRecursive(Comparable data[], !
! ! ! Comparable temp[], int low, int high) {!
!int n = high-low+1;!
!int middle = low + n/2;!
!int i;!

!
!if (n < 2) return;!
!// move lower half of data into temporary storage!
!for (i = low; i < middle; i++) {!
! temp[i] = data[i];!
!}!
!// sort lower half of array!
!mergeSortRecursive(temp,data,low,middle-1);!
!// sort upper half of array!
!mergeSortRecursive(data,temp,middle,high);!
!// merge halves together!
!merge(data,temp,low,middle,high);!

}!

8	

Quick Sort	

public void quickSortRecursive(Comparable data[],!
 int low, int high) {!
 // pre: low <= high!
 // post: data[low..high] in ascending order!
 int pivot; !
 if (low >= high) return;!
!
! !/* 1 - place pivot */!

 pivot = partition(data, low, high); !
! !/* 2 - sort small */!
! !quickSortRecursive(data, low, pivot-1);!
! !/* 3 - sort large */!
! !quickSortRecursive(data, pivot+1, high);!

}!
!

We no longer need to merge!	

9	

Partition	

1.  Put first element (pivot) into sorted position	

2.  All to the left of “pivot” are smaller and all

to the right are larger	

3.  Return index of “pivot”	

	
Look at an example…	

	
	

10	

Partition	

int partition(int data[], int left, int right) {!
 while (true) { //continue until we return right or left!
 while (left < right && data[left] < data[right])!
 right--; !
 if (left < right) {!
 swap(data,left++,right);!
 } else {!
 return left; !
 }!
!
 while (left < right && data[left] < data[right]) !
 left++;!
 if (left < right) {!
 swap(data,left,right--); !
 } else {!
 return right; !
 } !
 } !
}!
!

11	

Complexity	

•  Time:	

•  Partition is O(n)	

•  If partition breaks list exactly in half, same as

merge sort, so O(n log n) on average	

•  If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2) in worst case	

•  Space:	

•  O(n) (which is better than O(2n) for merge sort)	

12	

Merge vs. Quick	

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

3/10/14

3

13	

Food for Thought…	

•  How to avoid picking a bad pivot value?	

•  Pick median of 3 elements for pivot	

•  Combine selection sort with quick sort	

•  For small n, selection sort is faster	

•  Switch to selection sort when elements is <= 7	

•  Switch to selection/insertion sort when the list is

almost sorted (and partitions are very unbalanced)	

14	

Sorting Wrapup	

Time	
 Space	

Bubble	
 O(n2)	

Best: O(n) - if it stops	

O(n)	

Insertion	
 O(n2) 	

Best: O(n)	

O(n)	

Selection	
 O(n2)	
 O(n)	

Merge	
 O(n log n)	
 O(2n) = O(n)	

Quick	
 O(n log n)	

Worst: O(n2)	

O(n)	

15	

Vector Review: ���
Pros and Cons of Vectors	

Pros	

•  Good general purpose list	

•  Fast access to elements 	

•  Vec.get(15) finds element
15 in O(1) time	

•  Dynamically resizable	

Cons	

•  O(n) updates to front

of list (why?)	

•  Hard to predict time
for add (depends on
internal array size)	

•  Potentially wasted space	

Today we’re going to look at another way to
store data using LinkedLists.	

16	

List Interface	

interface List {!

size()!
isEmpty()!
contains(e)!
get(i)!
set(i, e)!
add(i, e)!
remove(i)!
addFirst(e)!
getLast()!
.!
.!
.!

}!!

•  Flexible interface	

•  Can be used to describe many
different types of lists (vectors,
linked lists, etc)	

•  It’s an interface…therefore it
provides no implementation	

17	

AbstractList Superclass	

abstract class AbstractList<E> implements List<E> {!

public void addFirst(E element) { add(0, element); } !
public E getLast() { return get(size()-1);} !

public E removeLast() { return remove(size()-1); }!
}!

•  AbstractList provides general purpose list functionality	

•  Code is shared among all sub-classes (i.e., classes that extend it, see Ch. 7)	

•  For example, Vector and SinglyLinkedList both extend AbstractList 	

•  Abstract classes in general do not implement every method in an interface	

•  Abstract classes are partial implementations of interfaces	

•  For example, size() is not defined in AbstractList although it is in the List interface	

•  Can always override methods in AbstractList later if necessary	

•  Can’t create an “AbstractList” directly	

•  Other lists extend AbstractList and implement missing functionality as needed	

public class Vector<E> extends AbstractList<E> {!

public int size() { return elementCount; }!
}!

18	

Lists	

•  General concept for storing/organizing data	

•  Vectors are good, but not perfect in all classes	

•  Some updates are slow 	

•  i.e., Add to beginning of vector	

•  Wasted space	

•  Hard to know exact performance 	

•  (Resizing can be expensive)	

•  We are going to explore other types of Lists	

•  SinglyLinkedList	

•  DoublyLinkedList	

3/10/14

4

19	

•  There are two key concepts in LinkedLists	

•  Elements of the list (data, next)	

•  The list itself (head, count, maybe tail)	

•  Visualizing lists	

LinkedList Basics	

A B C head	

(count=3)	

(tail)	

List element	
 List	
 20	

LinkedList Basics	

•  LinkedLists are a recursive data structure	

•  Each “node” (LinkedListElement) has: 	

•  A data value	

•  A “next” pointer that points to the next element

in the list	

•  Sometime a “previous” pointer that points to

previous element, but not always (only in doubly
linked lists)	

21	

•  How would we implement SinglyLinkedListElement?	

•  SinglyLinkedListElement = SLLE in my notes	

•  SLLE = Node in the book (in Ch 9)	

•  (next slide)	

•  How about SinglyLinkedList?	

•  SinglyLinkedList = SLL in my notes	

•  (implement on board)	

•  What would addFirst(E value) look like?	

•  getFirst()?	

•  addLast(E value)? 	

•  getLast()?	

SinglyLinkedLists	

value	

head	

(count = 3)	

nextElement	

22	

public class SinglyLinkedListElement<E> {!
!
 protected E data; // value stored in this element!
 protected SinglyLinkedListElement<E> nextElement; // ref to next!
!
 public SinglyLinkedListElement(E v, SinglyLinkedListElement<E> next) {!
 data = v;!
 nextElement = next;!
 }!
!
 public SinglyLinkedListElement(E v) {!
 this(v,null);!
 }!
!
 public SinglyLinkedListElement<E> next() {!
 return nextElement;!
 }!
!
 public void setNext(SinglyLinkedListElement<E> next) {!
 nextElement = next;!
 }!
!
 public E value() {!
 return data;!
 }!
!
 public void setValue(E value) { //doesn’t return old value this time!
 data = value;!
 }!
}!

value	

nextElement	

23	

•  How would we implement SinglyLinkedListElement?	

•  SinglyLinkedListElement = SLLE in my notes	

•  SLLE = Node in the book (in Ch 9)	

•  (previous slide)	

•  How about SinglyLinkedList?	

•  SinglyLinkedList = SLL in my notes	

•  (implement on board)	

•  What would addFirst(E value) look like? (on board)	

•  getFirst()? (on board)	

•  addLast(E value)? getLast()? (see next slide)	

SinglyLinkedLists	

value	

nextElement	

head	

(count = 3)	

24	

public void addLast(E value) {!
 count++;!
!
 //two cases to consider: empty list, or non-empty list!
 //case 1: empty list!
 if (head == null) {!
 head = new SLLE<E>(value);!
 }!
!
 //case 2: non-empty list. Must follow “next” pointers to tail!
 else {!
 //”finger” is pointer to possible tail!
 SLLE<E> finger = head;!
 while (finger.next() != null) { !
 //keep following next pointers until you find the tail!
 finger = finger.next();!
 }!
 !

!//finger is now pointing to the tail. Add new element to it!
 finger.setNext(new SLLE<E>(value));!
 }!
}!
!
public E getLast() {!
 SLLE<E> finger = head;!
 //keep following next pointers until you find the tail!
 while (finger != null && finger.next() != null) {!
 finger = finger.next();!
 }!
 return finger.value();!
}!

3/10/14

5

25	

Summary: Vectors vs. SLLs���
(Big-O runtime for Object o, int i)	

Operation	
 Vector	
 SLL	

size()	
 O(1)	
 O(1)	

addLast(o)	
 O(1) or O(n)(if resize)	
 O(n)	

removeLast()	
 O(1)	
 O(n)	

getLast()	
 O(1)	
 O(n)	

addFirst(o)	
 O(n)	
 O(1)	

removeFirst()	
 O(n)	
 O(1)	

getFirst()	
 O(1)	
 O(1)	

get(i)	
 O(1)	
 O(n)	

set(i, o)	
 O(1)	
 O(n)	

remove(i)	
 O(n)	
 O(n)	

contains(o)	
 O(n)	
 O(n)	

remove(o)	
 O(n)	
 O(n)	

