CSCI I 36
Data Structures \&
Advanced Programming
Jeannie Albrecht
Lecture II
Mar 5, 2014

Administrative Details

- Lab 4 is today
- Extend Vector to sort with a Comparator
- More details on next slide...
- Midterm during lab next Wednesday (3/I2)
- Can everyone start at $1: 00$? Should be finished by 3:00.
- Lab 5 will still be posted next week but is optional
- Extra credit opportunity
- Covers book, lab, lecture material through next Monday
- I will post a sample exam and a study guide

Lab 4 Details

- Lab 4
- Extend Vector to sort with a Comparator (described in textbook)
- Create Student class and read in data into Vector of Students
- Create Comparators to sort students in different ways (name, phone, mailbox, etc)
- You might want to use a ComparableAssociation at some point
- Same as normal Association, but has compareTo
- I was unable to update the phone book data $)^{(2)}$

Today's Outline

- Wrap up searching
- Briefly learn about Comparables and Comparators
- Discuss sorting algorithms
- High-level Goals
- Understand sorting algorithms
- Understand the tradeoffs between algorithms
- Learn how to prove properties of recursive programs using induction

Recap: Binary Search

- Find a name in the phonebook
- Guess a number between I and IOO
- These are examples of binary search
- Why does it work?
- Rule out as much of search space as possible with each guess
- What assumption (about the data) does it rely on?
- Is it recursive? Let's look at the code...
- http://www.cs.williams.edu/-ieannie/cs/ $36 /$ lectures/lecture9/SortSearchDemo/

Binary Search

- Complexity:
- Each recursive call takes at most 2 array comparisons
- So how many calls when $n=2^{k}$? (list size is a power of $2 \ldots$...) Size of list during recursion: $\left[2^{k}, 2^{k-1}, \ldots, 2^{0}, 0\right]$
$\rightarrow \mathrm{k}+\mathrm{l}$ calls with 2 comparisons each $\rightarrow 2(k+1)=2(\log n+1)=O(\log n)$ for list of size n
- Show: recBinarySearch takes $2(\log n+1)$ comparisons. (Assume list size is power of 2...)
- Overall O(log n) comparisons
- Worst case: $2(\log n+1)$
- Can we reduce the number of comparisons?
- Food for thought: BinSearchAlt.java

Is this version better?

- Worst case (element not found):
- $\log \mathrm{n}+1$ comparisons vs. $2(\log \mathrm{n}+\mathrm{I})$ comparisons
- Twice as good!
- Average case
- Only slight improvement in most cases
- Best case
- We now continue to recurse even if a[mid] == value right away
- This is actually worse than before...

Comparable Interface

- We want to define an interface for handling comparisons between objects
- We need a general method for "<" and ">" in recBinarySearch
- As long as our objects implement Comparable, we know we can safely call "compareTo" (required for binary search)
- See BinSearchComparable.java
public interface Comparable \{
//post: return < 0 if smaller than other
return 0 is equal to other
return > 0 if greater than other
int compareTo(Object other);
\}

compareTo in Card.java

```
public class Card implements Comparable
    public int compareTo(Object obj) {
        Card other = (Card) obj;
        if (suit != other.getSuit()) {
                return suit - other.getSuit(),
        }
        return rank - other.getRank();
    }
}
- Note: The magnitude of the values returned is not important.
    We only care if it's +, -, or 0!
- compareTo defines a natural ordering of Objects
- Can also use parameterized data types to avoid casting
- In lab this week, you'll explore another way to compare
    objects using Comparators
```


Comparators

- Limitations with Comparable interface
- Only permits one order between objects
- What if it isn't the desired ordering?
- What if it inn't implemented?
- Solution: Comparators

Comparators (Ch 6.8)

- A comparator is an object that contains a method that is capable of comparing two objects
- Sorting methods can apply a comparator to two objects when a comparison is to be performed
- Different comparators can be applied to the same data to sort in different orders or on different keys

```
public interface Comparator <E> {
```

 // pre: a and b are valid objects, likely of similar type
 // pre: a and b are valid objects, likely of
 // post: returns a value $<,=$, or $>$ than 0
if a is less than, equal to, or greater than b
public int compare(E a, E b);
\}

Different Types of Sorting

- Bubble sort
- Insertion sort
- Selection sort
- Merge sort
- Quick sort

Bubble Sort

- Simple sorting algorithm that works by repeatedly stepping through the list to be sorted, comparing two items at a time and swapping them if they are in the wrong order
- Repeated until no swaps are needed
- Gets its name from the way smaller elements "bubble" to the front of the list
- Time complexity?
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Space complexity?
- $\mathrm{O}(\mathrm{n})$ total (no additional space is required)

Bubble Sort

- First Pass:
- (5 ! 329) $\rightarrow\left(\begin{array}{l}1 \\ 5 \\ 3\end{array} 29\right)$
- ($15 \underline{5} 29$) $\rightarrow\left(\begin{array}{l}1 \\ \hline\end{array} 529\right)$
- ($135 \underline{2} 9) \rightarrow(13 \underline{5} 9)$
- (1325 9) \rightarrow (1325 9)
- Second Pass:
- (I $\underline{3} 259$) \rightarrow (I $\underline{3} 259$)
- ($13 \underline{2} 59) \rightarrow(1 \underline{2} 359)$
- (123 59) $\rightarrow(12359)$
- ($1235 \underline{9}$) $\rightarrow(1235 \underline{9})$

Insertion Sort

- Simple sorting algorithm that works by building a sorted list one entry at a time
- Less efficient on large lists than more advanced sorting algorithms
Advantages:
- Simple to implement and efficient on small lists

Space complexity

- O(n)
- Efficient on data sets which are already substantially sorted
- Time complexity
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

