

Administrative Details

- Lab 3 is due today at noon
- Run-time (big-O notation) in comments above methods
- Don't forget to define " n " if you say $\mathrm{O}(\mathrm{n})$
- I have to cancel office hours today...sorry! :)
- I might be in tomorrow afternoon instead
- Check your email

Last Time

- Discussed runtime analysis techniques
- Reviewed and discussed recursion
- Looked at factorial in class
- Looked at digit sum and subset sum in lab

Today's Outline

- Begin reviewing mathematical induction
- Begin learning about searching and sorting
- Two of the most important classes of algorithms
- We'll discuss two searches:
- Linear search
- Binary search

Recursion Tradeoffs

- Advantages

- Often easier to construct recursive solution
- Code is usually cleaner
- Some problems do not have obvious nonrecursive solutions
- Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)

Mathematical Induction

- The mathematical equivalent of recursion is called induction
- Induction is a proof technique
- Comes from how natural numbers are defined:
- A is the set of natural numbers such that
I. 0 is an element of A

2. For each n, if $0, I, 2, \ldots, n-I$ are in A, than n is in A.

Mathematical Induction

- Examples

$$
P=\sum_{i=0}^{n} i=0+1+\ldots+n=\frac{n(n+1)}{2}
$$

- Proof by induction:
- Base case: P is true for 0
- Inductive hypothesis: If P is true for all $\mathrm{k}<\mathrm{n}$, then P is true for n .

Mathematical Induction

- Prove: $\sum_{i=0}^{n} 2^{i}=2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$
- Prove: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$

$$
\text { Proof: } \begin{aligned}
0^{3}+1^{3} & +\ldots+n^{3}=(0+1+\ldots+n)^{2} \\
\left(0^{3}+1^{3}+\ldots n^{3}\right) & =\left(0^{3}+1^{3}+\ldots+(n-1)^{3}\right)+n^{3} \\
& =(0+1+\ldots+(n-1))^{2}+n^{3} \\
& =\left(\frac{n(n-1)}{2}\right)^{2}+n^{3} \\
& =n^{2}\left(\frac{(n-1)^{2}+4 n}{4}\right) \\
& =n^{2}\left(\frac{n^{2}+2 n+1}{4}\right) \\
& =n^{2}\left(\frac{(n+1)^{2}}{4}\right) \\
& =\left(\frac{n(n+1)}{2}\right)^{2} \\
& =(0+1+\ldots+n)^{2}
\end{aligned}
$$

What about Recursion?

-What does induction have to do with recursion?

- Same form!
- Base case
- Inductive case that uses simpler form of problem

What about Recursion?

- Example: factorial
- Prove that fact(n) requires $(\mathrm{n}-\mathrm{I})$ multiplications
- Base case: $\mathrm{n}=\mathrm{I}$ returns $\mathrm{I}, 0$ multiplications
- Assume true for all $\mathrm{k}<\mathrm{n}$, so fact(k) requires k -I multiplications.
- fact(n) performs one multiplication (n *fact($n-l)$). We know that fact($\mathrm{n}-\mathrm{I}$) requires $\mathrm{n}-2$ multiplications by inductive hypothesis.
$\mathrm{I}+\mathrm{n}-2=\mathrm{n}-\mathrm{I}$, therefore fact(n) requires n -I multiplications.

Searching

- What is searching?
- Locate element in collection
- Examples: Number in list, grade in gradebook, etc
- Complexity analysis, induction, recursion
- Today's algorithms
- Linear search - move down line
- Binary search - divide elements in half
- Next up
- Sorting
- Designing data structures to support other searching/ sorting algorithms

```
```

Required in parameterized

```
```

Required in parameterized
l}\begin{array}{l}{\mathrm{ static methods! (Can also have Linear Search Called a type parameter}}
{\mathrm{ parameterized classes)}}
l}\begin{array}{l}{\mathrm{ static methods! (Can also have Linear Search Called a type parameter}}
{\mathrm{ parameterized classes)}}
public class tinearSearchComp {
public class tinearSearchComp {
// post: returns index of value in a, or -1. if not found
// post: returns index of value in a, or -1. if not found
public static <E> int linearSearch(E a[l, E value) {
public static <E> int linearSearch(E a[l, E value) {
for (int i = 0; i < a.length; i++){
for (int i = 0; i < a.length; i++){
if (a[i].equals(value)) {
if (a[i].equals(value)) {
return i;
return i;
}
}
}
}
return -1;
return -1;
}
}
public static void main(String args[]) {
public static void main(String args[]) {
// search a String array
// search a String array
System.out.println(linearSearch(args, "cow"));
System.out.println(linearSearch(args, "cow"));
// search a Linear array
// search a Linear array
Integer odds[] = new Integer[] { 1,3,5,7,9 };
Integer odds[] = new Integer[] { 1,3,5,7,9 };
System.out.println(linearSearch(odds, 7));
System.out.println(linearSearch(odds, 7));
}
}
}

```
    }
```

- Where have we seen a linear search?
- Dictionary.java!
- [Look at SortSearchDemo]
// post: returns the definition of word, or "" if not found.
public String lookup(String word) \{
for (int i = 0; i < words.length; i++) Association a $=$ words[i]
return (String)a.getValue()

\}
return "";
\}

Binary Search

- Find a name in the phonebook
- Guess a number between I and 100
- These are examples of binary search
- Why does it work?
- Rule out as much of search space as possible with each guess
- What assumption (about the data) does it rely on?
- Is it recursive? Let's look at the code..
- http://www.cs.williams.edu/~jeannie/cs 136/lectures/lecture9/SortSearchDemo/

