
3/4/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 10	

Mar 3, 2014	

Administrative Details	

•  Lab 3 is due today at noon	

•  Run-time (big-O notation) in comments above

methods	

•  Don’t forget to define “n” if you say O(n)	

•  I have to cancel office hours today…sorry! 	

•  I might be in tomorrow afternoon instead	

•  Check your email	

2	

Last Time	

•  Discussed runtime analysis techniques	

•  Reviewed and discussed recursion	

•  Looked at factorial in class	

•  Looked at digit sum and subset sum in lab	

3	

Today’s Outline	

•  Begin reviewing mathematical induction	

•  Begin learning about searching and sorting	

•  Two of the most important classes of algorithms	

•  We’ll discuss two searches:	

•  Linear search	

•  Binary search	

4	

Recursion Tradeoffs	

•  Advantages	

•  Often easier to construct recursive solution	

•  Code is usually cleaner	

•  Some problems do not have obvious non-

recursive solutions	

•  Disadvantages	

•  Overhead of recursive calls	

•  Can use lots of memory (need to store state for

each recursive call until base case is reached)	

5	

Mathematical Induction	

•  The mathematical equivalent of recursion is
called induction	

•  Induction is a proof technique	

•  Comes from how natural numbers are

defined:	

•  A is the set of natural numbers such that 	

1.  0 is an element of A	

2.  For each n, if 0, 1, 2, …, n-1 are in A, than n is in A. 	

6	

3/4/14

2

Mathematical Induction	

•  Examples	

•  Proof by induction:	

•  Base case: P is true for 0	

•  Inductive hypothesis: If P is true for all k<n, then P
is true for n.	

€

P = i = 0 +1+ ...+ n =
n(n +1)
2i= 0

n

∑

7	

Mathematical Induction	

•  Prove:	

•  Prove: 	

€

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

8	

Proof:	

•  Base case:	

•  Ind. Hyp.: For assume true.	

•  	

•  Ind Step: Show true for n. 	

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

k < n
(03 + 13 + ... + k3) = (0 + 1 + ... + k)2

n = 0, 03 = (0)2.

9	

Proof:	

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

(03 + 13 + ...n3) = (03 + 13 + ... + (n� 1)3) + n3

= (0 + 1 + ... + (n� 1))2 + n3

=
�

n(n� 1)
2

⇥2

+ n3

= n2

�
(n� 1)2 + 4n

4

⇥

= n2

�
n2 + 2n + 1

4

⇥

= n2

�
(n + 1)2

4

⇥

=
�

n(n + 1)
2

⇥2

= (0 + 1 + ... + n)2 10	

What about Recursion?	

•  What does induction have to do with recursion?	

•  Same form!	

•  Base case	

•  Inductive case that uses simpler form of problem	

11	

What about Recursion?	

•  Example: factorial	

•  Prove that fact(n) requires (n-1) multiplications	

•  Base case: n = 1 returns 1, 0 multiplications	

•  Assume true for all k<n, so fact(k) requires k-1 multiplications.	

•  fact(n) performs one multiplication (n*fact(n-1)). We know

that fact(n-1) requires n-2 multiplications by inductive
hypothesis. 	

	
1+n-2 = n-1, therefore fact(n) requires n-1 multiplications.	

12	

3/4/14

3

Moving on…	
 Searching	

•  What is searching?	

•  Locate element in collection	

•  Examples: Number in list, grade in gradebook, etc	

•  Complexity analysis, induction, recursion	

•  Today’s algorithms	

•  Linear search - move down line	

•  Binary search - divide elements in half	

•  Next up	

•  Sorting	

•  Designing data structures to support other searching/

sorting algorithms	

14	

Linear Search	

•  Where have we seen a linear search?	

•  Dictionary.java!	

•  [Look at SortSearchDemo]	

// post: returns the definition of word, or "" if not found.!
 public String lookup(String word) {!
 for (int i = 0; i < words.length; i++) {!
 Association a = words[i];!
 if (a.getKey().equals(word)) {!
 return (String)a.getValue(); !
 }!
 }!
 return “”;!
 }!

	

	

15	

Linear Search	

public class LinearSearchComp {!
 // post: returns index of value in a, or -1 if not found!
 public static <E> int linearSearch(E a[], E value) {!
 for (int i = 0; i < a.length; i++) {!
 if (a[i].equals(value)) {!
 return i;!
 }!
 }!
 return -1;!
 }!
 !
 public static void main(String args[]) {!
 // search a String array!
 System.out.println(linearSearch(args, "cow"));!
 !
 // search a Linear array!
 Integer odds[] = new Integer[] { 1,3,5,7,9 };!
 System.out.println(linearSearch(odds, 7));!
 }!
}!
!

17	

Required in parameterized
static methods! (Can also have
parameterized classes)	

Called a type parameter	

Linear Search	

•  Complexity analysis of linear search:	

•  Best case:	

•  O(1)	

•  Worst case:	

•  O(n)	

•  Average case	

•  O(n)	

18	

Binary Search	

•  Find a name in the phonebook	

•  Guess a number between 1 and 100	

•  These are examples of binary search	

•  Why does it work?	

•  Rule out as much of search space as possible with each
guess	

•  What assumption (about the data) does it rely on?	

•  Is it recursive? Let’s look at the code…	

•  http://www.cs.williams.edu/~jeannie/cs136/lectures/lecture9/SortSearchDemo/	

19	

