
Computer Science 136 Exam 2

Sample exam

Show all work. No credit will be given if necessary steps are not shown or for illegible
answers. Partial credit for partial answers. Be clear and concise. Write your name on each

page of the exam. There are 102 points available, but the maximum score is 100.

You may use one page of handwritten notes (turn this in also). The use of other reference
materials or electronic devices is a violation of the honor code. Good luck!!

Question Points Earned Points Available

1 23

2 15

3 15

4 15

5 16

6 18

Total 102

Your name (please print):

I have neither given nor received aid on this examination:

(sign here)

1



Name:

1. (23 points) Short answers. Show your work and justify answers where appropriate.

a. Free bonus points given in class. What is the answer given in class for the first question
on exam 2? (2 points)

Skip this question.

b. When is it advantageous to use a splay tree instead of a regular binary search tree? (3
points)

Skip this question.

c. A tree with n elements is both a min-heap and a binary search tree. What does it look
like? (3 points)

Skip this question.

d. Which tree traversal would you use to print an expression tree in human-readable form?
(2 points)

e. Which tree traversal would you use to evaluate an expression tree? (2 points)

2



Name:

f. Given a SinglyLinkedList containing n elements, what is the complexity (Big O) of
removeFirst()? of removeLast()? (4 points)

g. Given a DoublyLinkedList containing n elements, what is the complexity (Big O) of
removeFirst()? of removeLast()? (4 points)

i. We applied sorting methods primarily to arrays and Vectors. Of the following sort
algorithms, which are most appropriate to sort a SinglyLinkedList: insertion sort, selection
sort, quicksort, merge sort? (3 points)

3



Name:

2. (15 points) A circular doubly linked list with four elements is represented as in the picture
below:

head

Suppose we have an implementation of such a list, class CircularDoublyLinkedList,
which includes instance variables:

protected DoublyLinkedListElement head;

protected int count;

Relevant parts of the class DoublyLinkedListElement from structure5 are on page 6.

Consider the addLast() method of the CircularDoublyLinkedList class:

// pre: value is not null

// post: adds value to the tail of the list

public void addLast(Object value);

a. What special cases must be considered when writing this method? (5 points)

4



Name:

b. Write Java code for this method. You need not replicate the pre- and post-conditions
specified on the previous page. You may not use addFirst() in your code. (10 points)

public void addLast(Object value) {

}

5



public class DoublyLinkedListElement {

protected Object data;

protected DoublyLinkedListElement nextElement;

protected DoublyLinkedListElement previousElement;

public DoublyLinkedListElement(Object v,

DoublyLinkedListElement next,

DoublyLinkedListElement previous) {

// post: constructs new element with list prefix referenced by

// previous and suffix referenced by next

data = v;

nextElement = next;

if (nextElement != null) nextElement.previousElement = this;

previousElement = previous;

if (previousElement != null) previousElement.nextElement = this;

}

public DoublyLinkedListElement(Object v) {

// post: constructs a single element

this(v,null,null);

}

public DoublyLinkedListElement next() {

// post: returns the element that follows this

return nextElement;

}

public DoublyLinkedListElement previous() {

// post: returns element that precedes this

return previousElement;

}

public Object value() {

// post: returns value stored here

return data;

}

public void setNext(DoublyLinkedListElement next) {

// post: sets value associated with this element

nextElement = next;

}

public void setPrevious(DoublyLinkedListElement previous) {

// post: establishes a new reference to a previous value

previousElement = previous;

}

}

6



Name:

3. (15 points) Recall that the Queue interface may be implemented using an array to store
the queue elements. Suppose that two int values are used to keep track of the ends of the
queue. We treat the array as circular: adding or deleting an element may cause the head or
tail to “wrap around” to the beginning of the array.

You are to provide a Java implementation of class CircularQueueArray by filling in the
bodies of the methods below. Note that there is no instance variable which stored the number
of elements current in the queue; you must compute this from the values of head and tail.
You may not add any additional instance variables.

public class CircularQueueArray {

// instance variables

protected int head, tail;

protected Object[] data;

// constructor: build an empty queue of capacity n

public CircularQueueArray(int n) {

}

// pre: queue is not fill

// post: adds value to the queue

public void enqueue(Object value) {

}

7



Name:

3. (continued)

// pre: queue is not empty

// post: removes value from the head of the queue

public Object dequeue() {

}

// post: return the number of elements in the queue

public int size() {

}

// post: returns true iff queue is empty

public boolean isEmpty() {

}

// post: returns true iff queue is full

public boolean isFull() {

}

}

8



Name:

4. (15 points) The StackSort. Suppose you need to sort a stream of Comparable elements,
and the only data structure available to you is an implementation of the Stack interface
in the structure5 package (say, a StackList). The elements are available only through an
Iterator, so you must process each item as it is returned by the next() method of the
Iterator. The sort method should return a Stack containing the sorted elements, with the
smallest at the top of the stack. Please fill in the body of the method.

public static Stack StackSort(Iterator iter) {

// pre: iter is an Iterator over a structure containing Comparables

// post: a Stack is returned with the elements sorted, smallest on top

}

9



Name:

5. (16 points) Recall the definition of a min-heap, a binary tree in which each node is
smaller than any of its descendants. For the rest of this question, we presume the Vector
implementation of heaps (class VectorHeap). Consider the following tree, which is a min-
heap.

132

5 3 89 34

21 233 55 8 144

1

a. Show the order in which the elements would be stored in the Vector underlying our
VectorHeap. (4 points)

111 2 3 4 5 6 7 8 9 100

b. Show the steps involved in adding the value 4 to the heap. Use drawings of the tree, not
the vector. (4 points)

10



Name:

c. Using the original tree (not the one with the 4 added), show the steps involved in removing
the minimum value of the heap. (4 points)

d. Why is the VectorHeap implementation of a priority queue better than one that uses a
linked list implementation of regular queues, modified to keep all items in order by priority?
Hint: Your answer should compare the complexities of the add and remove operations. (4
points)

11



Name:

6. (18 points) Suppose we have a BinaryTree that contains only Comparable values.

a. It is often useful to find the minimum and maximum values in the tree. Implement the
method maximum as a member of class BinaryTree. Relevant sections of BinaryTree.java
from the structure5 package are included on pages 14–16 to guide you. Your method should
return the Comparable that is the maximum value in the tree. It should return null if called
on an empty tree. (6 points)

public Comparable maximum() {

// pre: the values in this tree are all Comparable

// post: the maximum value in the tree is returned

}

b. What is the worst-case complexity of maximum on a tree containing n values? (2 points)

c. What is the complexity of maximum on a full tree containing n values? (2 points)

12



Name:

d. Consider the following method, which I propose as a member of class BinaryTree:

public boolean isBST() {

// post: returns true iff the tree rooted here is a binary search tree

if (this == EMPTY) return true;

return left().isBST() && right().isBST();

}

This method will not always return the correct value. Explain why, then provide a correct
method. You may use minimum() and maximum() from part (a), as well as any other methods
of BinaryTree. (6 points)

public boolean isBST() {

}

e. In class BinaryTree, why is the setLeft() method public, but the setParent()

method is protected? (2 points)

13



public class BinaryTree {

protected Object val; // value associated with node

protected BinaryTree parent; // parent of node

protected BinaryTree left; // left child of node

protected BinaryTree right; // right child of node

// The unique empty node

public static final BinaryTree EMPTY = new BinaryTree();

// A one-time constructor, for constructing empty trees.

private BinaryTree() {

val = null; parent = null; left = right = this;

}

// Constructs a tree node with no children. Value of the node

// is provided by the user

public BinaryTree(Object value) {

val = value; parent = null; left = right = EMPTY;

}

// Constructs a tree node with no children. Value of the node

// and subtrees are provided by the user

public BinaryTree(Object value, BinaryTree left, BinaryTree right) {

this(value);

setLeft(left);

setRight(right);

}

// Get left subtree of current node

public BinaryTree left() {

return left;

}

// Get right subtree of current node

public BinaryTree right() {

return right;

}

// Get reference to parent of this node

public BinaryTree parent() {

return parent;

}

// Update the left subtree of this node. Parent of the left subtree

// is updated consistently. Existing subtree is detached

public void setLeft(BinaryTree newLeft) {

if (isEmpty()) return;

if (left.parent() == this) left.setParent(null);

14



left = newLeft;

left.setParent(this);

}

// Update the right subtree of this node. Parent of the right subtree

// is updated consistently. Existing subtree is detached

public void setRight(BinaryTree newRight) {

if (isEmpty()) return;

if (right.parent() == this) right.setParent(null);

right = newRight;

right.setParent(this);

}

// Update the parent of this node

protected void setParent(BinaryTree newParent) {

parent = newParent;

}

// Returns the number of descendants of node

public int size() {

if (this == EMPTY) return 0;

return left().size() + right.size() + 1;

}

// Returns reference to root of tree containing n

public BinaryTree root() {

if (parent() == null) return this;

else return parent().root();

}

// Returns height of node in tree. Height is maximum path

// length to descendant

public int height() {

if (this == EMPTY) return -1;

return 1 + Math.max(left.height(),right.height());

}

// Compute the depth of a node. The depth is the path length

// from node to root

public int depth() {

if (parent() == null) return 0;

return 1 + parent.depth();

}

// Returns true if tree is full. A tree is full if adding a node

// to tree would necessarily increase its height

public boolean isFull() {

15



if (this == EMPTY) return true;

if (left().height() != right().height()) return false;

return left().isFull() && right().isFull();

}

// Returns true if tree is empty.

public boolean isEmpty() {

return this == EMPTY;

}

// Return whether tree is complete. A complete tree has minimal height

// and any holes in tree would appear in last level to right.

public boolean isComplete() {

int leftHeight, rightHeight;

boolean leftIsFull, rightIsFull, leftIsComplete, rightIsComplete;

if (this == EMPTY) return true;

leftHeight = left().height();

rightHeight = right().height();

leftIsFull = left().isFull();

rightIsFull = right().isFull();

leftIsComplete = left().isComplete();

rightIsComplete = right().isComplete();

// case 1: left is full, right is complete, heights same

if (leftIsFull && rightIsComplete &&

(leftHeight == rightHeight)) return true;

// case 2: left is complete, right is full, heights differ

if (leftIsComplete && rightIsFull &&

(leftHeight == (rightHeight + 1))) return true;

return false;

}

// Return true iff the tree is height balanced. A tree is height

// balanced iff at every node the difference in heights of subtrees is

// no greater than one

public boolean isBalanced() {

if (this == EMPTY) return true;

return (Math.abs(left().height()-right().height()) <= 1) &&

left().isBalanced() && right().isBalanced();

}

// Returns value associated with this node

public Object value() {

return val;

}

}

16


