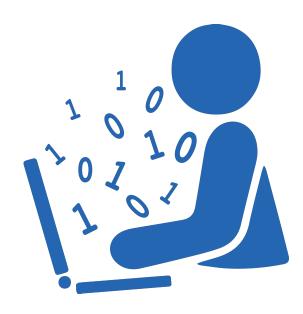


Announcements & Logistics

- Lab 9 Grading: Coming soon!
- Final exam:
 - Fri Dec 16 @ 9:30am in TPL 203
 - Reduced distractions/extra time TPL 205
 - 2 hour closed book exam
 - Cumulative w/ more weight on topics post-midterm topics
 - Practice problems are posted; review lecture slides, jupyter notebooks, HWs, and labs
 - Format will be very similar to midterm
- Review session: Wed Dec I4 @ 7:30pm-9:30pm in TPL 203
 - Very informal, come ask us questions

Student Help Hours Next Week

(Check webpage for updates!)


uuy		1 – 17, 2022 📼	-				Month Agend
	Sun 12/11	Mon 12/12	Tue 12/13	Wed 12/14	Thu 12/15	Fri 12/16	Sat 12/17
8am							
9am							
10am						9:30 – 12:30p FINAL EXAM	
Toam						TPL 203, TPL 205 for reduced	
11am						distractions	
12pm						-	
						·····	
1pm		1p – 2:30p Jeannie student help hours	1p – 2:30p Jeannie student beln hours	1:30p - 3p	1:30p – 2:30p		
2pm		Jeannie's office	Jeannie's office	Iris student help hours CS Common Room	Jeannie Jeannie's (Iris		
3pm				(3rd floor of TCL)	student CS		
					Common		
4pm							
5pm							
6pm							
7pm				7:30p - 9:30p			
8pm				Review session TPL 203			
9pm							
opin							
10pm							
11pm							

LastTime

- Reviewed OOP concepts using Python and Java as examples
 - A **class** vs an **instance** of the class
 - Attributes (instance variables) and __slots__
 - Accessor and mutator methods: getters, setters
 - **Scope**: public, private and protected (or _ and __ in Python)
 - Special methods and operator/function overloading

Today's Plan

- Summarize **main topics** covered in CS 134 this semester
- Complete course evals
 - We'll end lecture early to leave time for you to fill out evals

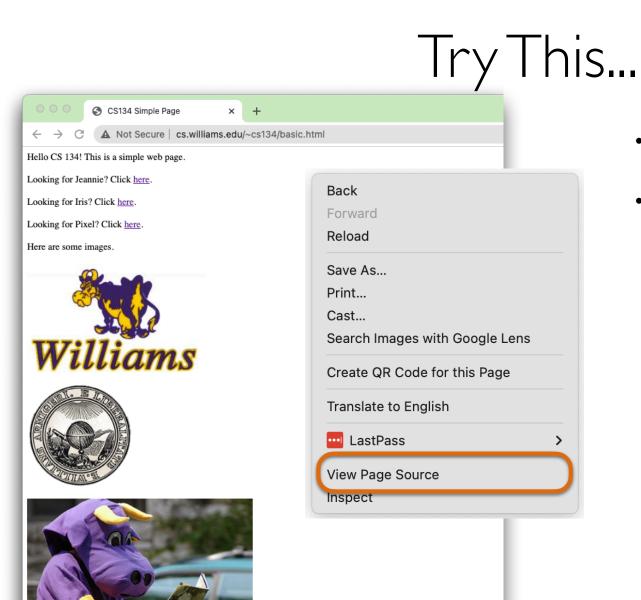
Optional Fun Stuff: Python & Webpages

What is a webpage?

"Ten movies streaming across that, that Internet, and what happens to your own personal Internet? I just the other day got... an Internet was sent by my staff at 10 o'clock in the morning on Friday. I got it yesterday [Tuesday]. Why? Because it got tangled up with all these things going on the Internet commercially. [...]

They want to deliver vast amounts of information over the Internet. And again, the Internet is not something that you just dump something on. It's not a big truck.

It's a series of tubes."


US Senator Ted Stevens (R-Alaska) in 2006, Head of the committee regulating Net Neutrality

A webpage is just a publicly accessible file on a computer somewhere.

HTML

- HyperText Markup Language
- Specifies how to format text for your Internet Browser
 - Different tags/symbols specify how computer should display text
 - Markup language, not a programming language!

- Right-click a <u>webpage</u>
- "View Page Source"

<html>

```
<head>
<title>CS134 Simple Page</title>
</head>
```

<body>

```
Hello CS 134! This is a simple web page.
```


>
>

Looking for Jeannie? Click here.

>
>
>

Looking for Iris? Click here.

>
>

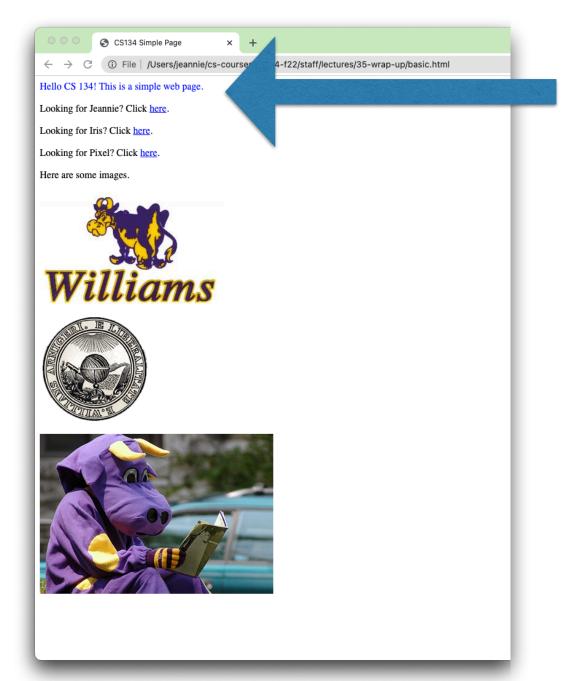
```
Looking for Pixel? Click <a href="https://www.cs.williams.edu/~iris/website/img/HAILab.jpg"> here</a>.
```


>
>

</body>

</html>

• Copy/Paste/Save with .html file extension in a text editor (like VS Code)


Try This...

<html> <head> <title>CS134 Simple Page</title> </head><body> Hello CS 134! This is a simple web page.

>
></pr> Looking for Jeannie? Click here.
>
>
></pr> Looking for Iris? Click here. <hr><hr><hr> Looking for Pixel? Click here.
>
>
></pr> Here are some images.
>
>
></pr> <hr><hr>
>
>
></pr> </body>

</html>

• Make a small change. Save and view file in a web browser.

HTML

- <h |>Text goes here</h |> → Makes a level1 heading
 - Guess: there's also an <h2></h2>, and <h3></h3>, and ...
- **Text goes here** \Rightarrow Makes the text bold (also)
- <i>Text goes here</i> \implies Makes the text italic (also)
- <a href="<u>http://url-here.edu</u>"><u>Link Text here</u> ➡ Makes a hyperlink
- Text goes here ➡ Changes the font
 - Text goes here ➡ Changes font size
 - Text goes here ➡ Changes font color
- Text goes here \rightarrow Paragraph definition (~2 newlines)
- < br> \Rightarrow Line break (~I newline)

HTML Header

- <html> ➡ Defines what markup language is being used
- <head>Text & Tags in here are part of the header </head>
- <title>This title appears in the web browser </title>
- <body>Text & Tags in here are part of the body text </body>
- </html> ➡ Ends HTML file

```
<html>
<head>
<title>CS134 Simple Page</title>
</head>
<body>
Hello CS 134! This is a simple web page.
<br><br>
Looking for Jeannie? Click <a href="http://www.cs.williams.edu/~jeannie">here</a>.
<br><br>
Looking for Iris? Click <a href="http://www.cs.williams.edu/~iris">here</a>.
```

Pulling Source Code from Web Pages

terminal% pip install requests

>>> import requests
>>> r = requests.get('http://www.cs.williams.edu/~cs134/basic.html')
>>> r.text

'<html>\n <head>\n <title>CS134 Simple Page</title>\n </</pre> head>\n\n <body>\n Hello CS 134! This is a simple web page. \n\n
>
\n Looking for Jeannie? Click <a href="http://</pre> www.cs.williams.edu/~jeannie">here.\n\n
>
\n Looking for Iris? Click here.\n\n
>
\n Looking for Pixel? Click <a</pre> href="https://www.cs.williams.edu/~iris/website/img/ HAILab.jpg">here. $n\n
>
>n Here are some images.$ \n\n
>
\n <img src="http://sysnet.cs.williams.edu/</pre> Williams-Logo.jpg" alt="purple cow">\n\n
>
\n \n\n <pr>

\n img src="http://sysnet.cs.williams.edu/reading-" cow.jpg" alt="reading cow"> $n\n </body>nn</html>n \n n$ \n'

- If you want to parse the HTML text from a string, the Beautiful Soup module is recommended:
 - <u>https://beautiful-soup-4.readthedocs.io/en/latest/</u>
- terminal% pip install beautifulsoup4

>>> from bs4 import BeautifulSoup
>>> soup = BeautifulSoup(r.text, 'html.parser')
>>> print(soup.prettify())

```
<html>
 <head>
  <title>
   CS134 Simple Page
  </title>
 </head>
 <body>
  Hello CS 134! This is a simple web page.
  <br/>br/>
  <br/>br/>
  Looking for Jeannie? Click
  <a href="http://www.cs.williams.edu/~jeannie">
   here
  </a>
  <br/>br/>
  <br/>br/>
  Looking for Iris? Click
  <a href="http://www.cs.williams.edu/~iris">
   here
  </a>
```

```
>>> soup.title
<title>CS134 Simple Page</title>
>>> soup.title.name
'title'
>>> soup.title.string
'CS134 Simple Page'
>>> soup.title.parent.name
'head'
>>> soup.img
<img alt="purple cow" src="http://sysnet.cs.williams.edu/
Williams-Logo.jpg"/>
```

>>> soup.a

here</
a>

>>> soup.find_all('a')

[here,
 here,
 here,

HAILab.jpg">here]

Extracting All URLs

for link in soup.find_all('a'):
 print(link.get("href"))

http://www.cs.williams.edu/~jeannie
http://www.cs.williams.edu/~iris
https://www.cs.williams.edu/~iris/website/img/HAILab.jpg

See beautifulsoup4 documentation

A Beautiful Soup

lates

Search docs

- Beautiful Soup Documentation
- Quick Start
- Installing Beautiful Soup
- Making the soup
- Kinds of objects
- Navigating the tree
- Searching the tree
- Modifying the tree
- Output
- Specifying the parser to use
- Encodings
- Line numbers
- Comparing objects for equality
- Copying Beautiful Soup objects
- Parsing only part of a document
- Troubleshooting
- Translating this documentation
- Beautiful Soup 3

Beautiful Soup then parses the document using the best available parser. It will use an HTML parser unless you specifically tell it to use an XML parser. (See Parsing XML.)

Kinds of objects

Reputiful Soun transforms a complex HTML document into a complex tree of Puthon objects. But

Lots more beautifulsoup4 can do! Learning the importance of documentation! <u>https://beautiful-soup-4.readthedocs.io/en/latest/</u>

soup = BeautifulSoup('<b class="boldest">Extremely bold')
tag = soup.b
type(tag)
<class 'bs4.element.Tag'>

Tags have a lot of attributes and methods, and I'll cover most of them in Navigating the tree and Searching the tree. For now, the most important features of a tag are its name and attributes.

Name

Every tag has a name, accessible as .name :

tag.name # u'b'

If you change a tag's name, the change will be reflected in any HTML markup generated by Beautiful Soup:

tag.name = "blockquote"
tag
<blockquote class="boldest">Extremely bold</blockquote>

Attributes

What are we doing?!

- So now we can scrape HTML data from webpages...
- ...and parse the data so we can pull out meaningful text...

Why might we want to pull source code from the web?

- Maybe you're:
 - building a web crawler, documenting all the webpages on the Internet so their text can be searchable...
 - a sports recruiter and you need to pull wins/losses data from local amateur leagues...
 - a designer building software to make stock market transactions based on the weather...
 - a PR firm tracking in vivo mentions of particular products or brands
 - a humanitarian gathering evidence on organized crime groups
 - an AI researcher trying to generate new paint color names

What are we doing?!

- Python has **lots** more accessible modules that do other fun things
 - Play music
 - Process images
 - Generate text
 - Statistical operations
 - Among others!

Take-away

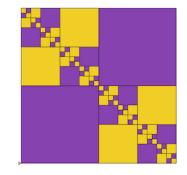
- Python is a **powerful tool** that:
 - Processes, manipulates, organizes data
 - Accesses data
 - Creates beautiful things: art, solutions, puzzles, ...
 - Expands human capabilities
- But also: communicates complex computational ideas

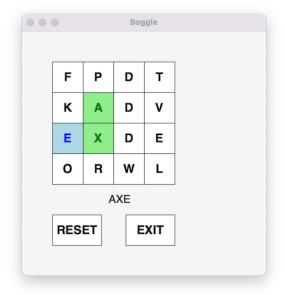
Course Wrap-Up

CSI34 in a Nutshell

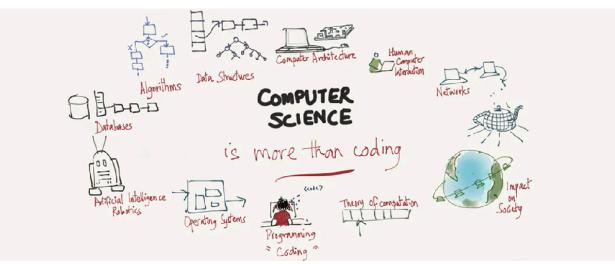


- We have covered many topics this semester!
- We started out learning the basics of Python and programming in general
- Pre-midterm
 - **Types & Operators** (int, float, %, //, /, concatenation, etc)
 - **Functions** (variable scope, return vs print, defining vs calling functions)
 - Booleans and conditionals (if elif else)
 - Iteration: for loops, while loops, nested loops, accumulation variables in loops
 - **Sequences**: strings (string methods, in/not in, iteration, etc) , lists (list methods, append, extend, etc), ranges, tuples, lists of lists
 - File reading: with ... as , strip(), split()
 - Mutability and aliasing


CSI34 in a Nutshell


- Then we moved on to more advanced CS topics
- Post-midterm
 - **Data structures**: More tuples, dictionaries, sets
 - **Sorting** data with key functions
 - **Recursion**: recursive methods and classes
 - Graphical recursion with turtle graphics
 - Classes, Objects, and OOP
 - attributes, _____slots___, special methods, getters, setters, inheritance
 - 'Bigger'' OOP Examples: Tic-Tac-Toe, Boggle, LinkedList
 - Advanced topics:
 - Efficiency (Big-O), Searching and sorting, Iterators, Python vs. Java

- Hello, World!
- Day of the week (conditionals)
- Word puzzles (strings and loops)
- Voting algorithms (lists and loops)
- Debugging
- Name popularity (dictionaries and plotting)
- Recursion
- Autocomplete (classes and methods)
- Boggle (OOP, more classes and inheritance)
- Selection sort (Java)



Takeaway: What is Computer Science?

- Computer science \neq computer programming!
- Computer science is the study of what computers [can] do; programming is the practice of making computers do useful things
- Programming is a big part of computer science, but there is much more to CS than just writing programs!
- Another part of CS is computational thinking

https://www.edsurge.com/news/2015-12-02-computer-science-goes-beyond-coding

Take away: Computational Thinking

- Computational thinking allows us to develop solutions for complex problems. We present these solutions such that a computer, a human, or both, can understand.
- Four pillars of CT:
 - **Decomposition** break down a complex problem into smaller parts
 - **Pattern recognition** look for similarities among and within problems
 - Abstraction focus on important information only, ignore irrelevant details
 - Algorithms develop a step-by-step solution to the problem
- A computer can performs billion of operations per second, but computers only do exactly what you tell them to do!
- In this course we will learn **learned** how to 1) use CT to develop algorithms for solving problems, and 2) implement our algorithms through computer programs

Goals from Lecture |

- Abstraction and modularity
- Representing knowledge with data structures
- Iteration and recursion as computational tools
- Divide and conquer problem solving strategies
- Testing and debugging
- Organizing and dealing with data
- Plotting and visualizing data
- Playing with python graphics
- Transitioning from Python to Java (and beyond!)

Beyond CSI34

- For those interested in continuing on the CS path:
 - Obvious next step: take **CSI36** + **Math 200**
 - Practice more Java over winter break: redo our labs in Java!
- In general, if you enjoy puzzles and programming, there are many ways to practice these skills:
 - Try <u>Project Euler</u>: Math + CS puzzles
 - <u>MIT course: The missing semester of your CS eduction</u>
- Staying connected with CS as non-majors:
 - Can still take CS136 and other courses!
 - Come talk to us for more ideas

Course Evals Logistics

- Two parts: (1) SCS form, (2) Blue sheets (both online)
- Your feedback helps us improve the course and shape the CS curriculum
 - Your responses are **confidential** and we only receive anonymized comments after we submit our grades
 - We appreciate your constructive feedback
- SCS forms are used for evaluation, blue sheets are open-ended comments directed only to your instructor

To access the online evaluations, log into **Glow** (glow.williams.edu) using your regular Williams username and password (the same ones you use for your Williams email account). On your Glow dashboard you'll see a course called "**Course Evaluations**." Click on this and then follow the instructions you see on the screen. If you have trouble finding the evaluation, you can ask a neighbor for help or reach out to ir@williams.edu.

Thank you! WE MADE IT!

- You all should be proud of how much you've learned!
- **Thank you** for your patience and enthusiasm during these somewhat crazy times
- Good luck on finals and have a great break!

The end!

Leftover Slides

HTML Tables

- <table> \Rightarrow Begins the table
 - ➡ Begins a row
 - <td>Text in cell |</td> \Rightarrow Adds a column *within* the row
 - <td>Text in cell 2</td> \Rightarrow Adds a column within the row
 - <td>Text in cell 3</td> \Rightarrow Adds a column within the row
 - \rightarrow Ends a row
 - → Begins 2nd row
 - <td>Text in cell 4 \Rightarrow Adds a column within 2nd row
 - ➡ Ends 2nd row
- \implies Ends the table

HTML Bulleted Lists

➡ Begins numbered list (i.e., ordered list)

- I. < Ii>Text goes here</ Ii>
- 2. <Ii>Another numbered bullet item</Ii>

➡ Ends numbered list

➡ Begins bulleted list(i.e., unordered list)

- Text goes here
- Another numbered bullet item
- Yet another numbered bullet item

➡ Ends bulleted list