
CS134:  
Java & OOP Review

Announcements & Logistics
• Lab 10 Selection Sort in Java: due today/tomorrow @ 10 pm

• Final exam reminder: Fri Dec 16 @ 9:30am in TPL 203

• Reduced distractions/extra time: TPL 205
• Cumulative, more weight on post-midterm topics
• Will discuss more about this in Friday's wrap up lecture
• Practice problems for final available on Glow

• Review session/office hours next week: check calendar!

• Review session: Wed Dec 14 7:30pm-9:30pm in TPL 203

• Course evals on Friday: bring a laptop to class if possible

for i in range(10):  
 print(i)

 ... 

for el in seq:  
 print(el)  
 ...  

for (int i = 0; i < 10; i++) {  
 System.out.println(i);

 ... 
}

for (int i : myArray) { 
 System.out.println(i);

 ... 
}

Last Time
• Discussed loops and conditionals in Java

• Python for loops are most similar to for each loops in Java

• A simple Java for loop explicitly requires starting condition, stopping
condition, and steps in the header: 
 
 
 
 
 

for each loop in Java

Python vs Java: Check-in after Lab 10
• Curly braces, semicolons: what value do they add?

• Make the code more maintainable and platform independent!

• White spaces, tabs, and line breaks are not stored consistently across
computer architectures and operating systems

• Converting a file from one system to another (say Windows to Mac)
can change the white space

• This would break a Python script; Java program might become
unreadable but will still run!

• Specifying data types at all times: how is it useful?

• In larger coding projects, not knowing the type of variables can make
code harder to follow

• This is why Python docstrings are so important!

Python vs Java: Check-in after Lab 10
• Curly braces, semicolons: what value do they add?

• Make the code more maintainable and platform independent!

• White spaces, tabs, and line breaks are not stored consistently across
computer architectures and operating systems

• Converting a file from one system to another (say Windows to Mac)
can change the white space

• This would break a Python script; Java program might become
unreadable but will still run!

• Specifying data types at all times: how is it useful?

• In larger coding projects, not knowing the type of variables can make
code harder to follow

• This is why Python docstrings are so important!

Today's Plan
• Review classes, objects, and methods

• A class vs an instance of the class (or an object)

• Attributes (or instance variables in Java) and slots

• Accessor and mutator methods: getters and setters

• Scope: public, private and protected (or _ and __ in Python)

• Note that the aforementioned topics are language independent!

• We will look at them in both languages but the focus will be on
reviewing the concepts and not the syntax!

Programming Language Features

• Basic features:

• Data Types
• Reading user input
• Loops
• Conditionals

• Advanced topics:

• Classes
• Interfaces
• Collections
• Graphical User Interface Programming

• Classes are blueprints for objects

• Collections of data (variables/attributes) and methods

• An instance is a specific realization of a class

• We did not talk about Python classes until Lecture 21

• Easy to ignore/forego this topic for simple examples in Python

• In Java, all code is defined within a class

• We have to come to terms with classes and methods from Day 1

• No such thing as a classless module or function in Java

• Support for classes are a feature of all OOP languages

• Python and Java are both OOP languages

Classes and Objects

Classes and Objects
• In Python, everything is an object: including ints, strings, functions, etc

• Python types are implicit (not explicitly declared)

• In Java, there are primitive types which are not objects (ints, doubles,
booleans, chars etc) and "Object" versions of these types (Integer,
Double, String, etc.)

• Java requires explicit type declaration

• Why would we ever want to define our own classes?

• Create our own “data types”

• A way to bundle (or encapsulate) related data and methods for
interacting with that data in an application-specific manner

Review: Object-Oriented Programming
Four major principles of OOP programming:

• Abstraction

• Inheritance

 

• Encapsulation

• Polymorphism

 

Review: Object-Oriented Programming
Four major principles of OOP programming:

• Abstraction

• Hide unnecessary details from the programmer/user

• Inheritance

• The ability for one object/class to take on the states, behaviors, and
functionality of another (parent) object/class

• Encapsulation

• The bundling of data, along with the methods that operate on that data,
into a single unit

• Polymorphism

• Using a single type entity (method, operator) to represent different types in
different scenarios (e.g., operator/method overloading)

Methods vs Functions
• Always defined within a class

• Are called using dot notation on a
specific instance of the containing class

• A method is implicitly passed a reference
to the object on which it is invoked (self
in Python, this in Java)

• A method can optionally manipulate
parameters

• A method may or may not return a value

• A method can operate on the
attributes/instance variables that are
defined within the containing class

• Stand-alone logical blocks of code that are
defined outside of a class

• Once defined, a function can be called
from anywhere in the program (by
importing if in a separate module)

• A function definition specifies
parameters (input that is passed to the
function when it is called). If parameters
are passed, they need to be passed
explicitly

• A function may perform an action (e.g.
print or modify), and/or return a value (or
implicitly return None) 

Methods (Python and Java) Functions (Python only)

self Parameter Review
• In Python, method definitions have self explicitly defined as the

first parameter (and we use this variable inside the method body)

• But we don’t pass the self parameter explicitly when we invoke
the methods!

• This is because whenever we call a method on an object, the object
itself is implicitly passed as the first parameter

• Methods are like object-specific functions and this lets us access the
object’s attributes via the methods directly

Classes & Methods

def plainFunction():

 print("I am a classless function!")

class TestClass:

 def sayHi(self, name):

 return "Hello " + name

if __name__ == "__main__":

 # create an instance of the TestClass class

 test = TestClass()

 # call sayHi() method on test

 print(test.sayHi("CS134"))

 # call plainFunction, which is not part of
class

 plainFunction()

Python Classes, Methods, & Functions

Simple method that takes a parameter
“name” and returns a string

Example of a classless function

test is a specific instance of the class TestClass

call sayHi method on test using dot notation

Standalone function call

public class TestClass {

 public String sayHi(String name) {

 return "Hello " + name;

 }

 public static void main (String args[]) {

 //create an instance TestClass

 TestClass test = new TestClass();

 //invoke the method sayHi

 System.out.println(test.sayHi("CS134"));

 }

}

Java Classes and Methods
Method that returns a String and takes

a String “name” as a parameter

Note the use of “new”

Call sayHi method on test

Data Attributes or Instance Variables
• Classes keep track of relevant state in instance variables (Java) or

attributes (Python)

• In Python, attributes are stored in __slots__

• Attributes in __slots__ (list of strings) are explicitly specified

• In Java, instance variables are typically defined at the top of the class
before all methods

• Instance variables are accessible to all methods of the class

• RULE OF THUMB: Make all attributes private (or protected)

• In Python, this means using "_" or "__" and in Java we say “private”

• Only accessed via accessor (getter) and mutator (setter) methods

Scope Review

• Python: Double
leading underscore
(__) in name of
variable or method

• Java: Use the
keyword private

• Private methods and
variables/attributes
are not accessible
from outside of the
containing class 

• Python: Single
leading underscore
(_) in name of
variable or method

• Java: Use the
keyword protected

• Protected methods
and variables/
attributes should only
be accessed by
subclasses 

• Python: No leading
underscore in name
of variable or method

• Java: Use the
keyword public

• Public methods and
variables/attributes
can be freely used
outside of the class

Private Protected Public

These access rules are actually enforced in Java;
are more of a convention in Python

Methods and Data Abstraction
• Users are given access to data attributes only through methods in OOP

• Manipulating attributes/instance variables should only be done via:

• accessor (getter) methods: provide “read-only” access to the class
attributes/instance variables (return value)

• mutator (setter) methods: let us modify the values of class
attributes/instance variables (do not return)

• Using getters and setters enforces data abstraction

• Methods provide a public interface to attribute values

• Attribute representation remains part of the private implementation

originally in lec 27

class LinkedList:

 """Implements our own recursive list data
structure"""

 __slots__ = ['_value', '_rest']

 def __init__(self, value=None, rest=None):

 self._value = value

 self._rest = rest

 # getters/setters

 def getRest(self):

 return self._rest

 def getValue(self):

 return self._value

 def setValue(self, val):

 self._value = val

Private attributes

public getter method for _rest

public getter method for _value

public setter method for _value

public class LinkedList {

 private String value;

 private LinkedList rest;

 public LinkedList(String val) {

 this.value = val;

 this.rest = null;

 }

 public LinkedList(String val, LinkedList other) {

 this.value = val;

 this.rest = other;

 }

 public String getValue() {

 return this.value;

 }

 public LinkedList getRest() {

 return this.rest;

 }

 public void setValue(String v) {

 this.value = v;

 }

Private instance variables
Notice that rest is of type LinkedList. Recursion!

Constructors, like __init__ in
Python. Ignore for now!

public getter method for value

public getter method for rest

public setter method for value

Special Methods & Operator Overloading
• Classes in Python and Java define several “special” methods

• Python: __init__, __str__, __eq__

• Java: constructor(s), toString(), equals()

• Python has many more due to operator overloading

• Operator overloading means we redefine common operations (like
addition + or using list notation [] for access) for our data type

• __add__, __getitem__, __setitem__, __contains__

• Many more!
• Java does not support operator overloading

• But it does support method overloading (same method, different
parameters)

• When creating a new instance of a class in Python or Java, we have to
initialize the values of the attributes/instance variables

• Python: __init__ method

• Java: Constructor(s)

• These special methods are automatically called when you create an
instance of the class

• Python: board = BoggleBoard()

• Java: BoggleBoard board = new BoggleBoard()
(notice the use of new)

• Let’s look at how this works for our LinkedList

Initializing an Object

public class LinkedList {

 private String value;

 private LinkedList rest;

 public LinkedList(String val) {

 this.value = val;

 this.rest = null;

 }

 public LinkedList(String val, LinkedList other) {

 this.value = val;

 this.rest = other;

 }

Python

Java

Constructors have no return type and
are the same name as the class

Java does not allow us to specify “default”
values for parameters, so we need to
define multiple constructors with the
same name (method overloading)

class LinkedList:

 """Implements our own recursive list data structure"""

 __slots__ = ['_value', '_rest']

 def __init__(self, value=None, rest=None):

 self._value = value

 self._rest = rest

• It is often convenient to be able to print a string “version” of an
instance of a class

• Very helpful when debugging

• Python and Java both provide special methods for this

• Python: __str__

• Java: toString()

• For __str__ and toString(), we can choose how the objects of
the class are printed

String Representation of an Object

>>> from linked list import *

>>> myList = LinkedList('a')

>>> print(myList)

[a]

 LinkedList myList, myList2;

 myList = new LinkedList("a");

 System.out.println("myList: " + myList);

 private String toStringHelper(){

 if (this.getRest() == null) {

 return this.getValue();

 } else {

 return this.getValue() + ", " + this.getRest().toStringHelper();

 }

 }

 public String toString() {

 return "[" + this.toStringHelper() + "]";

 }

Python

Java

__str__ called automatically.

Code from main method.
toString() called automatically.

 def __strElements(self):

 # helper function for __str__()

 if self._rest is None:

 return str(self._value)

 else:

 return str(self._value) + ", " + self._rest.__strElements()

 def __str__(self):

 return "[" + self.__strElements() + "]"

terminal% java LinkedList

myList: [a]

Comparing Objects
• Often convenient to compare two instances of a class

• We have to decide if we want to compare their values or identities

• Comparing values: determining if the data contained in two separate
instances of a class is the same (e.g., two lists that contains same values)

• Python: == operator (__eq__ special method, operator
overloading)

• Java: equals() method

• Comparing identities: determining if two instances are actually the
same? (Do they reside in the same place in memory?)

• Python: is operator (cannot be overloaded!)

• Java: == operator

public boolean equals(LinkedList other) {

 if (this.getRest() == null && other.getRest() == null) {

 return true;

 } else if (this.getRest() != null && other.getRest() != null) {

 boolean val = this.getValue().equals(other.getValue());

 boolean r = this.getRest().equals(other.getRest());

 return val && r;

 } else {

 return false;

 }

}

def __eq__(self, other):

 # If both lists are empty

 if self._rest is None and other.getRest() is None:

 return self._value == other.getValue()

 # If both lists are not empty, then value of current list elements

 # must match, and same should be recursively true for

 # rest of the list

 elif self._rest is not None and other.getRest() is not None :

 return self._value == other.getValue() and self._rest == other.getRest()

 # If we reach here, then one of the lists is empty and other is not

 else:

 return False

Python

Java
Recursive since == calls this method

Recursive call to equals()

Generally speaking
in Java, we use
equals() to

compare anything
other than

primitive types. Be
careful using ==
with objects in

Java!

Other Useful Methods
• Testing membership - we often want to know if a specific item or

value exists in our data structure

• Python: in operator (__contains__ special method)

• Java: contains() method

• Computing length - we often want to know the length or size of a
data structure

• Python: len function (__len__ special method)

• Java: length() method

• For our LinkedList implementations, all of these operations/
methods will be recursive

Python Java

Other Useful Methods

public int length() {

 if (this.getRest() == null && this.getValue() == null) {

 return 0;

 } else if (this.getRest() == null) {

 return 1;

 } else {

 return 1 + this.getRest().length();

 }

}

public boolean contains(String search) {

 if (this.getValue().equals(search)){

 return true;

 } else if (this.getRest() == null) {

 return false;

 } else {

 return this.getRest().contains(search);

 }

}

len() function calls __len__() method

slightly updated version accounts for empty list

def __len__(self):

 # base case: i'm an empty list

 if self._rest is None and self._value is None:

 return 0

 # i am the last item

 elif self._rest is None and self._value is not None:

 return 1

 else:

 # same as return 1 + self._rest.__len__()

 return 1 + len(self._rest)

in operator calls __contains__() method

def __contains__(self, val):

 if self._value == val:

 return True

 elif self._rest is None:

 return False

 else:

 # same as calling self.__contains__(val)

 return val in self._rest

The	end!

