CSI34:
 Sorting

Announcements \& Logistics

- Lab 9 Boggle
- Work on Boggle again in lab this week today/tomorrow
- All three parts are due Wed/Thur at 10 pm
- HW 9 will be released on Wed, due next Mon @ 10 pm (last one!)
- Last lab (Lab IO) will be a very short Java program
- We will discuss Java in last few lectures after we wrap up sorting today

Do You Have Any Questions?

Last Time: Efficiency \& Searching

- Measured efficiency as number of steps taken by algorithm on worstcase inputs of a given size
- Introduced Big-O notation which captures the rate at which the number of steps taken by the algorithm grows wrt size of input n, "as n gets large"
- Compared array lists vs linked lists
- Compared linear vs binary search

Today: Searching and Sorting

- Wrap up our discussion of binary search including a runtime analysis
- Discuss some classic sorting algorithms:
- Selection sorting in $O\left(n^{2}\right)$ time
- A brief (high level) discussion of how we can improve it to $O(n \log n)$
- Overview of recursive merge sort algorithm

Review: Logarithms

- Logarithms are the inverse function to exponentiation
- $\log _{2} n$ describes the exponent to which 2 must be raised to produce n
- That is, $2^{\log _{2} n}=n$
- Alternatively:
- $\log _{2} n$ (essentially) describes the number of times n must be divided by 2 to reduce it to below 1
- For us, here's the important takeaway:
- How many times can we divide n by 2 until we get down to 1
- $\approx \log _{2} n$

Review: Binary Search

- Base cases? When are we done?
- If list is too small (or empty) to continue searching
- If item we're searching for is the middle element

```
def binarySearch(aList, item):
    """"Assume aList is sorted."""
    n = len(aList)
    mid = n // 2
    # base case 1
    if n == 0:
        return False
    # base case 2
    elif item == aList[mid]:
        return True
    # recursive cases...
```


mid = n//2

Review: Binary Search

- Recursive case:
- Recurse on left side if item is smaller than middle
- Recurse on right side if item is larger than middle

If item $<\mathrm{L}$ [mid], then need to search in L[:mid]

Review: Binary Search

- Recursive case:
- Recurse on left side if item is smaller than middle
- Recurse on right side if item is larger than middle

If item $>\mathrm{L}[\mathrm{mid}]$, then need to search in L[mid+l:]

$$
\text { mid }=\mathrm{n} / / 2
$$

Review: Binary Search

```
def binarySearch(aList, item):
    """'Assume aList is sorted.""""
    n = len(aList)
    mid = n // 2
    # base case 1
    if n == 0:
    return False
    # base case 2
    elif item == aList[mid]:
    return True
    # recurse on left
    elif item < aList[mid]:
        return binarySearch(aList[:mid], item)
    # recurse on right
    else:
        return binarySearch(aList[mid + 1:], item)
```


Review: Binary Search

- Binary search: recursive search algorithm to search in a sorted array list
- Similar to how we search for a word in a (physical) dictionary
- Takes $O(\log n)$ time since we are reducing half of the search space on each step: $n \rightarrow n / 2 \rightarrow n / 4 \rightarrow n / 8 \rightarrow \cdots \rightarrow n / 2^{i}=1$
- Much more efficient than a linear search
- Note: $\log n$ grows much more slowly compared to n as n gets large

But how expensive is sorting??

$\log _{2}(I$ billion $) \sim 30$

Sorting Selection Sort

Sorting

- Problem: Given a sequence of unordered elements, we need to sort the elements in ascending order.
- There are many ways to solve this problem!
- Built-in sorting functions/methods in Python
- sorted () : function that returns a new sorted list
- sort (): method that mutates and sorts the list it's called on
- Today: how do we design our own sorting algorithm?
- Question: What is the best (most efficient) way to sort n items?
- We will use Big-O to find out!

Selection Sort

- A possible approach to sorting elements in a list/array:
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on

Selection Sort

- A possible approach to sorting elements in a list/array:
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on

Selection Sort

- A possible approach to sorting elements in a list/array:
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on

1

4
2
7
6

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Find the smallest element and move it to the first position and repeat

Selection Sort

- Generalize: For each index i in the list L , we need to find the $\mathbf{m i n}$ item in L[i:] so we can replace L[i] with that item
- In fact we need to find the position minIndex of the item that is minimum in L[i:]
- Reminder: how to swap values of variables a and b ?
- Using tuple assignment in Python: $\mathrm{a}, \mathrm{b}=\mathrm{b}, \mathrm{a}$
- Or using a temp variable: temp $=\mathrm{a}$; $\mathrm{a}=\mathrm{b} ; \mathrm{b}=$ temp
- Let's implement this algorithm! (We won't use recursion this time, although we could...)

Selection Sort Code

```
def selectionSort(myList):
    """"Selection sort of given list myList,
    mutates list and sorts using selection sort."""
    # find size
    n = len(myList)
    # traverse through all elements
    for i in range(n):
```

\# find min element in remaining unsorted list
minIndex = i
for j in range($i+1, n)$:
if myList[minIndex] > myList[j]:
minIndex $=j$
\# swap min element with element at i
myList[i], myList[minIndex] = myList[minIndex], myList[i]
>>> myList $=[12,2,9,4,11,3,1,7,14,5,13]$
>>> selectionSort(myList)
>>> print(myList)
$[1,2,3,4,5,7,9,11,12,13,14]$

Selection Sort Analysis

- For $i=0$, inner loop checks $n-1$ items
- For $i=1$, inner loop checks $n-2$ items
- For $i=n-1$, inner loop checks 0 items

```
# traverse through all elements
for i in range(n):
    # find min element in remaining unsorted list
    minIndex = i
    for j in range(i + 1, n):
        if myList[minIndex] > myList[j]:
            minIndex = j
    # swap min element with element at i
myList[i], myList[minIndex] = myList[minIndex], myList[i]
```


Selection Sort Analysis

- Within the inner loop we have $O(1)$ steps - just I comparison (constant)
- Thus overall number of steps is sum of inner loop steps

$$
(n-1)+(n-2)+\cdots+0 \leq n+(n-1)+(n-2)+\cdots+1
$$

- What is this sum? (Math 200??)

```
# traverse through all elements
for i in range(n):
# find min element in remaining unsorted list
minIndex = i
for j in range(i + 1, n):
        if myList[minIndex] > myList[j]:
                minIndex = j
    # swap min element with element at i
myList[i], myList[minIndex] = myList[minIndex], myList[i]
```


Selection Sort Analysis

$$
\begin{aligned}
S & =n+(n-1)+(n-2)+\cdots+2+1 \\
+\quad S & =1+2+\cdots+(n-2)+(n-1)+n
\end{aligned}
$$

$$
\begin{aligned}
& 2 S=(n+1)+(n+1)+\cdots+(n+1)+(n+1)+(n+1) \\
& 2 S=(n+1) \cdot n \\
& S=(n+1) \cdot n \cdot 1 / 2
\end{aligned}
$$

- Total number of steps taken by selection sort is thus:

$$
\text { - } O(n(n+1) / 2)=O(n(n+1))=O\left(n^{2}+n\right)=O\left(n^{2}\right)
$$

Sorting

Merge Sort

Towards an $O(n \log n)$ Algorithm

- There are other sorting algorithms that compare and rearrange elements in different ways, but are still $O\left(n^{2}\right)$ steps
- Any algorithm that takes n steps to move each item n positions (in the worst case) will take at least $O\left(n^{2}\right)$ steps
- To do better than n^{2}, we need to move an item in fewer than n steps
- We can sort in $O(n \log n)$ time if we are clever: Merge sort algorithm (Invented by John von Neumann in 1945)

Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem
- Algorithm:
- (Divide) Recursively sort left and right half $(O(\log n))$
- (Conquer) Merge the sorted halves into a single sorted list (O(n))
- (More info in extra slides at the end of this lecture!)

Selection vs Merge Sort in Practice

- Selection sort is $O\left(n^{2}\right)$ and merge sort is $O(n \log n)$ time
- How different is the performance in practice?
- Example: wordList is 12,000 words from the book Pride \& Prejudice
- miniList and medList are the first 500 and 7000 words respectively

```
wordList = []
with open('prideandprejudice.txt') as book:
    for line in book:
        line = line.strip().split()
        wordList.extend(line)
print(len(wordList))
```


122089

```
>>> miniList = wordList[:500]
>>> medList = wordList[:7000]
```


Selection vs Merge Sort in Practice

- miniList: 500 words
- medList: 7000 words
- wordList: ~ 12000 words
timedSorting(miniList)

Selection sort takes 0.005692720413208008 secs Merge sort takes 0.0005681514739990234 secs

```
timedSorting(medList)
```

Selection sort takes 1.0527238845825195 secs Merge sort takes 0.009032011032104492 secs

```
timedSorting(wordList)
```

Selection sort takes 322.0893268585205 secs Merge sort takes 0.1942448616027832 secs
~ 5 mins vs $1 / 5 \mathrm{sec}!$

Summary: Searching and Sorting

- We have seen algorithms that are
- $O(\log n)$: binary search in a sorted list
- $O(n)$: linear searching in an unsorted list
- $O(n \log n)$: merge sort
- $O\left(n^{2}\right)$: selection sort
- Important to think about efficiency when writing code!

The end!

Leftover Slides

Merging Sorted Lists

- Problem. Given two sorted lists \mathbf{a} and \mathbf{b}, how quickly can we merge them into a single sorted list?

merged list C

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

```
def merge(a, b):
    """Merges two sorted lists a and b,
    and returns new merged list c"""
    # initialize variables
    i, j, k = 0, 0, 0
    lenA, lenB = len(a), len(b)
    c = []
    # traverse and populate new list
    while i < lenA and j < lenB:
        if a[i] <= b[j]:
            c.append(a[i])
            i += 1
        else:
            c.append(b[j])
            j += 1
k += 1
# handle remaining values
if i < lenA:
    c.extend(a[i:])
elif j < lenB:
    c.extend(b[j:])
return c
```


Merge Sort Algorithm

- Base case: If list is empty or contains a single element: it is already sorted
- Recursive case:
- Recursively sort left and right halves
- Merge the sorted lists into a single list and return it
- Question:
- Where is the sorting actually taking place?

```
def mergeSort(L):
    """Given a list L, returns
    a new list that is L sorted
    in ascending order."""
    n = len(L)
    # base case
    if n == 0 or n == 1:
        return L
```

 else:
 \(\mathrm{m}=\mathrm{n} / / 2\) \# middle
 \# recurse on left \& right half
 sortLt \(=\) mergeSort(L[:m])
 sortRt \(=\) mergeSort(L[m:])
 \# return merged list
 return merge(sortLt, sortRt)
 Merge Sort Example

Merge Sort Example

