CS |34
Sorting

H D @ = \ /.
T IEEEINT

Announcements & Logistics

Lab 9 Boggle

- Work on Boggle again in lab this week today/tomorrow
- All three parts are due Wed/Thur at 10 pm
- HW 9 will be released on Wed, due next Mon @ 10 pm (last onel)

 last lab (Lab 10) will be a very short Java program

« We will discuss Java in last few lectures after we wrap up sorting today

Do You Have Any Questions?

Last Time: Efficiency & Searching

- Measured efficiency as number of steps taken by algorithm on worst-
case Inputs of a given size

* Introduced Big-O notation which captures the rate at which the number
of steps taken by the algorithm grows wrt size of input n, "as n gets
large”

« Compared array lists vs linked lists O(n?)

- Compared linear vs binary search
O(n)

Time —

o(1)

Number of Elements —»

Joday: Searching and Sorting

- Wrap up our discussion of binary search including a runtime analysis

« Discuss some classic sorting algorithms:

» Selection sorting in O(n?) time
+ A brief (high level) discussion of how we can improve it to O(nlog n)

- Overview of recursive merge sort algorithm

., @
\,QO
\,OJXO
\:s
CY—

Review: Logarithms

Logarithms are the inverse function to exponentiation

log, n describes the exponent to which 2 must be raised to produce n
That is, 2'°%" = p

Alternatively:

- log, n (essentially) describes the number of times n must be divided
by 2 to reduce it to below 1

For us, here's the important takeaway:

+ How many times can we divide n by 2 until we get down to 1

- w~log,n

Review: Binary Search

- Base cases! When are we done!
- If list 1s too small (or empty) to continue searching
- If tem we're searching for is the middle element

def binarySearch(alList, item):
"""Assume alList is sorted."""
n = len(aList)

mid = n // 2
base case 1
if n == 0: Check middle

return False

base case 2
elif item == alList[mid]:
return True

recursive cases... +

mid = n//2

Review: Binary Search

Recursive case:
Recurse on left side if item 1s smaller than middle

Recurse on right side If item Is larger than middle

If item < L[mid], then need to
search in L[:mid]

| N\
B

mid = n//2

Review: Binary Search

Recursive case:
Recurse on left side if item 1s smaller than middle

Recurse on right side If item Is larger than middle

If item > L[mid], then need to
search in L[mid+1:]

Review: Binary Search

def binarySearch(alList, item):
"""Assume alList is sorted."""
n = len(alList)
mid = n // 2
base case 1
if n

return False

base case 2

elif item aList[mid]:
return True

recurse on left
elif item < alList[mid]:

Technically, there 1s one
small problem with our

implementation. List splicing
s actually O(n)! See Jupyter

for improvement.

/

return binarySearch(aList[:mid], item)

recurse on right
else:

return binarySearch(aList[mid + 1:], item)

Review: Binary Search

Binary search: recursive search algorithm to search in a sorted array list
Similar to how we search for a word in a (physical) dictionary

+ Takes O(log n) time since we are reducing half of the search space on
each step: n = n/2 - nl4d - n/8 - - - n/2' =1

Much more efficient than a linear search

0(n?)
Note: log n grows much more
slowly compared to n as n gets large
T O(n)
But how expensive is sorting?? o
£
log, (1 billion) ~ 30 o

Number of Elements —>

Sorting
Selection Sort

B) ..@ m \ /R

Sorting

Problem: Given a sequence of unordered elements, we need to sort
the elements in ascending order.

There are many ways to solve this problem!
Built-in sorting functions/methods in Python
sorted():function that returns a new sorted list
sort(): method that mutates and sorts the list it's called on
Today: how do we design our own sorting algorithm!?
Question: What is the best (most efficient) way to sort n items?

We will use Big-O to find out!

Selection Sort

A possible approach to sorting elements in a list/array:
Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort

A possible approach to sorting elements in a list/array:
Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move it to the
second position, and so on

v
A

Selection Sort

A possible approach to sorting elements in a list/array:
Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort

Find the smallest element and move It to the first position and repeat

Selection Sort

Find the smallest element and move It to the first position and repeat

Selection Sort

Find the smallest element and move It to the first position and repeat

= B
1 2 4

Selection Sort

Find the smallest element and move It to the first position and repeat

Selection Sort

Find the smallest element and move It to the first position and repeat

1l
1 2 4

/ 6

Selection Sort

Find the smallest element and move It to the first position and repeat

Selection Sort

Find the smallest element and move It to the first position and repeat

Selection Sort

Find the smallest element and move It to the first position and repeat

Ll
1 2 4 6 7

Selection Sort

Generalize: For each index i in the list L, we need to find the min item
inL[i:] sowe canreplace L[1] with that item

In fact we need to find the position minIndex of the item that is
minimum in L [i:]

Reminder: how to swap values of variables a and b?
Using tuple assignment in Python:a, b = b, a
Or using a temp variable: temp = a; a = b; b = temp

Let's implement this algorithm! (We won't use recursion this time,
although we could...)

Selection Sort Code

def selectionSort(myList):
"""Selection sort of given list myList,
mutates list and sorts using selection sort.™""
find size
n = len(myList)

traverse through all elements
for i in range(n):

find min element in remaining unsorted list
minIndex = 1
for j in range(i + 1, n):
if myList[minIndex] > myList[j]:
minIndex =]

swap min element with element at 1
myList[i], myList[minIndex] = myList[minIndex], myList[i]

>>> myList = [12, 2, 9, 4, 11, 3, 1, 7, 14, 5, 13]
>>> selectionSort(myList)
>>> print(myList)

(1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14]

Selection Sort Analysis

Fori = 0, inner loop checks n — 1 items

Fori =1, inner loop checks n — 2 items

Fori =n— 1, inner loop checks 0 items

traverse through all elements
for i in range(n):

find min element in remaining unsorted list
minIndex = 1
for j in range(i + 1, n):
if myList[minIndex] > myList[j]:
minIndex = j

swap min element with element at 1

myList[i], myList[minIndex] = myList[minIndex], myList[il

Selection Sort Analysis

Within the inner loop we have O(1) steps - just | comparison (constant)

Thus overall number of steps is sum of inner loop steps
n-DH+n-2)+--+0<n+n-1D+m-2)+--+1

What is this sum? (Math 2002?)

traverse through all elements
for i in range(n):

find min element in remaining unsorted list
minIndex = 1
for j in range(i + 1, n):
if myList[minIndex] > myList[j]:
minIndex = j

swap min element with element at 1
myList[i], myList[minIndex] = myList[minIndex], myList[il

Selection Sort Analysis

S=n+m-1H)+n-2)+---+2+1
+ S=14+2+-+n-2)+(n—-1)+n

2S=mn+D)+@+D+--+m+DH)+n+D)+m+1)

2S=m+1)-n
S=mn+1)-n-1/2

- Total number of steps taken by selection sort is thus:
+ O(n(n+1)/2) =0 +1)) =0m?*+n) =0n?

Sorting
Merge Sort

S 3 .2 i \ /&%
o2 Giigw e

JTowards an O(n log n) Algorithm

- There are other sorting algorithms that compare and rearrange elements in

different ways, but are still O(n?) steps

+ Any algorithm that takes n steps to move each item n positions (in

the worst case) will take at least O(n?) steps
- To do better than n?, we need to move an item in fewer than n steps

* We can sort in O(nlogn) time if we are clever: Merge sort algorithm

(Invented by John von Neumann in [945)

Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

+ Algorithm:

 (Divide) Recursively sort left and right half (O(log n))
* (Conquer) Merge the sorted halves into a single sorted list (O(n))

* (More info In extra slides at the end of this lecture!)

n = len(L)

121 219 1 4 11 14| 5 13

08
H
\l

Selection vs Merge Sort In Practice

Selection sort is O(n?) and merge sort is O(nlogn) time

How different is the performance in practice?

Example: wordLi1st is 12,000 words from the book Pride & Prejudice

minilList and medL1ist are the first 500 and 7000 words
respectively

wordList = []
with open('prideandprejudice.txt') as book:
for line 1in book:
line = line.strip().split()
wordList.extend(1line)
print(len(wordList))

122089

>>> miniList = wordList[:500]
>>> medList = wordList[:7000]

Selection vs Merge Sort In Practice

minibist: 500 words timedSorting(minilList)

« medList: 7000 words Selection sort takes 0.005692720413208008 secs
Merge sort takes 0.0005681514739990234 secs

« wordList: ~ 12000 words

timedSorting(medList)

Selection sort takes 1.0527238845825195 secs
Merge sort takes 0.009032011032104492 secs

timedSorting(wordList)

Selection sort takes 322.0893268585205 secs
Merge sort takes 0.1942448616027832 secs

~5 mins vs 1/5 sec!

Summary: Searching and Sorting

VWe have seen algorithms that are
O(log n). binary search in a sorted list
O(n): linear searching in an unsorted list
O(nlogn): merge sort 0(n%) 0Ch log n)
O(n?): selection sort

Important to think about 0(n)
efficiency when writing code! T

Time

oCL)

Number of Elements —>

H D @ = \ /.
T IEEEINT

Leftover Slides

7N

B) .0 = \ /&

Merging Sorted Lists

Problem. Given two sorted lists @ and b, how quickly can we merge
them into a single sorted list?

a b
214 9 11 12 1 315 7 1314
1]

merged list c

Merging Sorted Lists

sali]l <= blj] ?
- Yes,al[1] appendedto C
- No,b[j] appendedto ¢

a b
214 9 11 12 1 315 7 1314
1 J

k merged list c

Merging Sorted Lists

sali]l <= blj] ?
- Yes,al[1] appendedto C
- No,b[j] appendedto ¢

a b

2 4 9 11 12 1 3,5 7 13|14

k merged list c

Merging Sorted Lists

sali]l <= blj] ?
- Yes,al[1] appendedto C
- No,b[j] appendedto ¢

a b

2 4 9 11 12 1 3,5 7 13|14

k merged list C

Merging Sorted Lists

sali]l <= blj] ?
- Yes,al[1] appendedto C
- No,b[j] appendedto ¢

a b
2 41 9 11 12 1 3|5 7 13|14
i J

k merged list C

Merging Sorted Lists

sali]l <= blj] ?
- Yes,al[1] appendedto C
- No,b[j] appendedto ¢

/113 14

=
u-’l U1

k merged list c

Merging Sorted Lists

sali]l <= blj] ?
- Yes,al[1] appendedto C
- No,b[j] appendedto ¢

a b
2 41 9 11 12 1 35| 7113 14
i]

1,2 3 4 5 7 |9 11| 12 13|14

*

merged list C Kk

Merging Sorted Lists

def merge(a, b):
"""Merges two sorted lists a and b,
and returns new merged list c"""
initialize variables

Walk through lists a, b, ¢ i, 3, k=0,0,0
, Co . lenA, lenB = len(a), len(b)
maintaining current position of c =[]

indices L Js k # traverse and populate new list
. . while i < lenA and j < lenB:
Compare ali] and bl j],

- - - if a[i] <= b[j]:
whichever is smaller gets put in whoald] == oLl

c.append(af[i])

the spot of c[k] i4= 1
else:

; : : - d(b[]
Merging two sorted lists into At
one is an O(n) step algorithm! k += 1

: # handle remaining values
Can use this merge procedure i€ i < lenA: 7 e
to design our recursive merge FozrzeEmel{all s 1)
sort algorithm! elif j < lenB:

c.extend(b[j:])

return c

Merge Sort Algorithm

Base case: If list Is empty or T e SeTRin) -

contains a single element: it Is """Given a list L, returns
gﬂreacbxgorted a new list that is L sorted
in ascending order."""

. n = len(L
« Recursive case: (L)

, # base case
-+ Recursively sort left and if n == 0 or n == 1:

right halves return L

else:

- Merge the sorted lists Into a m=n//2 # middle

single list and return it
recurse on left & right half

. Question: sortLt = mergeSort(L[:m])
sortRt = mergeSort(L[m:])

- Where s the sorting .
. # return merged list
actually taking place!? return merge(sortLt, sortRt)

Merge Sort Example

12 9 11
—
12 9 11
-/ \
?J\z 9 11
12 9ﬁ 11

11

Merge Sort Example

