
CS134:  
Sorting



Announcements & Logistics
• Lab 9 Boggle 


• Work on Boggle again in lab this week today/tomorrow
• All three parts are due Wed/Thur at 10 pm

• HW 9 will be released on Wed, due next Mon @ 10 pm (last one!)

• Last lab (Lab 10) will be a very short Java program

• We will discuss Java in last few lectures after we wrap up sorting today

Do You Have Any Questions?



Last Time:  Efficiency & Searching
• Measured efficiency as number of steps taken by algorithm on worst-

case inputs of a given size
• Introduced Big-O notation which captures the rate at which the number 

of steps taken by the algorithm grows wrt size of input , "as  gets 
large"

• Compared array lists vs linked lists
• Compared linear vs binary search

n n



Today:  Searching and Sorting
• Wrap up our discussion of binary search including a runtime analysis

• Discuss some classic sorting algorithms: 

• Selection sorting in  time

• A brief (high level) discussion of how we can improve it to 

• Overview of recursive merge sort algorithm

O(n2)

O(n log n)



• Logarithms are the inverse function to exponentiation 

•  describes the exponent to which  must be raised to produce 

• That is, 

• Alternatively: 

•  (essentially) describes the number of times  must be divided 
by  to reduce it to below  

• For us, here’s the important takeaway:

• How many times can we divide  by  until we get down to 

•  

log2 n 2 n

2log2 n = n

log2 n n
2 1

n 2 1

≈ log2 n

Review:  Logarithms



• Base cases?  When are we done?

• If list is too small (or empty) to continue searching 

• If item we’re searching for is the middle element 

Review:  Binary Search

mid = n//2

Check middle

def binarySearch(aList, item):

    """Assume aList is sorted."""

    n = len(aList)

    mid = n // 2

    # base case 1

    if n == 0:

        return False    

    # base case 2

    elif item == aList[mid]:

        return True

    

    # recursive cases...



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Review:  Binary Search

mid = n//2

If item < L[mid], then need to 
search in L[:mid]



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Review:  Binary Search

mid = n//2

If item > L[mid], then need to 
search in L[mid+1:]



Review:  Binary Search
def binarySearch(aList, item):

    """Assume aList is sorted."""

    n = len(aList)

    mid = n // 2

    # base case 1

    if n == 0:

        return False    

    # base case 2

    elif item == aList[mid]:

        return True

    

    # recurse on left

    elif item < aList[mid]:

        return binarySearch(aList[:mid], item)        

    # recurse on right

    else:

        return binarySearch(aList[mid + 1:], item)

Technically, there is one 
small problem with our 

implementation.  List splicing 
is actually O(n)!  See Jupyter 

for improvement. 



• Binary search: recursive search algorithm to search in a sorted array list

• Similar to how we search for a word in a (physical) dictionary

• Takes  time since we are reducing half of the search space on 
each step:  

• Much more efficient than a linear search


• Note:  grows much more  
slowly compared to  as  gets large

O(log n)
n → n/2 → n/4 → n/8 → ⋯ → n/2i = 1

log n
n n

Review:  Binary Search

 (1 billion) ~ 30log2

But how expensive is sorting??



Sorting
Selection Sort



Sorting
• Problem: Given a sequence of unordered elements, we need to sort 

the elements in ascending order.

• There are many ways to solve this problem!

• Built-in sorting functions/methods in Python

• sorted(): function that returns a new sorted list

• sort():  method that mutates and sorts the list it’s called on

• Today:  how do we design our own sorting algorithm?

• Question:  What is the best (most efficient) way to sort  items?

• We will use Big-O to find out!

n



Selection Sort
• A possible approach to sorting elements in a list/array:  

• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the 
second position, and so on
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Selection Sort
• Find the smallest element and move it to the first position and repeat



Selection Sort
• Generalize: For each index  in the list L, we need to find the min item 

in L[i:] so we can replace L[i] with that item

• In fact we need to find the position minIndex of the item that is 
minimum in L[i:]


• Reminder:  how to swap values of variables a and b?

• Using tuple assignment in Python: a, b = b, a


• Or using a temp variable:  temp = a; a = b; b = temp

• Let's implement this algorithm! (We won’t use recursion this time, 
although we could…)

i



Selection Sort Code
def selectionSort(myList):

    """Selection sort of given list myList,

    mutates list and sorts using selection sort."""

    # find size

    n = len(myList)

    

    # traverse through all elements

    for i in range(n):

        

        # find min element in remaining unsorted list

        minIndex = i

        for j in range(i + 1, n):

            if myList[minIndex] > myList[j]:

                minIndex = j

                

        # swap min element with element at i

        myList[i], myList[minIndex] = myList[minIndex], myList[i]

>>> myList = [12, 2, 9, 4, 11, 3, 1, 7, 14, 5, 13]

>>> selectionSort(myList)

>>> print(myList)

[1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14]



Selection Sort Analysis
• For , inner loop checks  items

• For , inner loop checks  items
• ...

• For , inner loop checks  items

i = 0 n − 1

i = 1 n − 2

i = n − 1 0

    # traverse through all elements

    for i in range(n):

        

        # find min element in remaining unsorted list

        minIndex = i

        for j in range(i + 1, n):

            if myList[minIndex] > myList[j]:

                minIndex = j

                

        # swap min element with element at i

        myList[i], myList[minIndex] = myList[minIndex], myList[i]



Selection Sort Analysis
• Within the inner loop we have  steps - just 1 comparison (constant)

• Thus overall number of steps is sum of inner loop steps  

• What is this sum?  (Math 200??)

O(1)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1

    # traverse through all elements

    for i in range(n):

        

        # find min element in remaining unsorted list

        minIndex = i

        for j in range(i + 1, n):

            if myList[minIndex] > myList[j]:

                minIndex = j

                

        # swap min element with element at i

        myList[i], myList[minIndex] = myList[minIndex], myList[i]



Selection Sort Analysis

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:
•    O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)



Sorting
Merge Sort



Towards an  AlgorithmO(n log n)
• There are other sorting algorithms that compare and rearrange elements in 

different ways, but are still  steps

• Any algorithm that takes  steps to move each item  positions (in 
the worst case) will take at least  steps

• To do better than , we need to move an item in fewer than  steps 

• We can sort in  time if we are clever :  Merge sort algorithm 
(Invented by John von Neumann in 1945)

O(n2)

n n
O(n2)

n2 n

O(n log n)



• If we split the list in half, sorting the left and right half are smaller 
versions of the same problem

• Algorithm:   


• (Divide) Recursively sort left and right half (O(log n))

• (Conquer) Merge the sorted halves into a single sorted list (O(n))

• (More info in extra slides at the end of this lecture!)

Merge Sort:  Basic Idea

L
m = n//2

0 n = len(L)

12 2 9 4 11 3 1 7 14 5 13



Selection vs Merge Sort in Practice
• Selection sort is  and merge sort is  time
• How different is the performance in practice?
• Example:  wordList is 12,000 words from the book Pride & Prejudice

• miniList and medList are the first 500 and 7000 words 
respectively

O(n2) O(n log n)

wordList = []

with open('prideandprejudice.txt') as book:

    for line in book:

        line = line.strip().split()

        wordList.extend(line)

print(len(wordList))

>>> miniList = wordList[:500]

>>> medList = wordList[:7000]

122089



Selection vs Merge Sort in Practice
• miniList:  500 words
• medList:  7000 words
• wordList: ~12000 words

~5 mins vs 1/5 sec!



Summary:  Searching and Sorting
• We have seen algorithms that are

• :  binary search in a sorted list

• :  linear searching in an unsorted list

• :  merge sort

• :  selection sort
• Important to think about  

efficiency when writing code!

O(log n)

O(n)

O(n log n)

O(n2)

O(1)

O(n)

O(n2)

O(log n)

O(n log n)



The	end!



Leftover Slides



• Problem.  Given two sorted lists a and b, how quickly can we merge 
them into a single sorted list?

Merging Sorted Lists

merged list c

a

122 94 11

i

31 7 145 13

b

j



Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c
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Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

2 3



Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

2 3 54 7 9 11 12 13 14



• Walk through lists  
maintaining current position of 
indices 

• Compare  and , 
whichever is smaller gets put in 
the spot of 

• Merging two sorted lists into 
one is an  step algorithm!

• Can use this merge procedure 
to design our recursive merge 
sort algorithm!

a, b, c

i, j, k

a[i] b[ j]

c[k]

O(n)

Merging Sorted Lists



• Base case: If list is empty or 
contains a single element: it is 
already sorted


• Recursive case: 
• Recursively sort left and 

right halves
• Merge the sorted lists into a 

single list and return it
• Question:  

• Where is the sorting 
actually taking place?

Merge Sort Algorithm



4 11 1 7 5 13

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13



31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13


