
CS134:  
Sorting

Announcements & Logistics
• Lab 9 Boggle

• Work on Boggle again in lab this week today/tomorrow
• All three parts are due Wed/Thur at 10 pm

• HW 9 will be released on Wed, due next Mon @ 10 pm (last one!)

• Last lab (Lab 10) will be a very short Java program

• We will discuss Java in last few lectures after we wrap up sorting today

Do You Have Any Questions?

Last Time: Efficiency & Searching
• Measured efficiency as number of steps taken by algorithm on worst-

case inputs of a given size
• Introduced Big-O notation which captures the rate at which the number

of steps taken by the algorithm grows wrt size of input , "as gets
large"

• Compared array lists vs linked lists
• Compared linear vs binary search

n n

Today: Searching and Sorting
• Wrap up our discussion of binary search including a runtime analysis

• Discuss some classic sorting algorithms:

• Selection sorting in time

• A brief (high level) discussion of how we can improve it to

• Overview of recursive merge sort algorithm

O(n2)

O(n log n)

• Logarithms are the inverse function to exponentiation

• describes the exponent to which must be raised to produce

• That is,

• Alternatively:

• (essentially) describes the number of times must be divided
by to reduce it to below

• For us, here’s the important takeaway:

• How many times can we divide by until we get down to

•

log2 n 2 n

2log2 n = n

log2 n n
2 1

n 2 1

≈ log2 n

Review: Logarithms

• Base cases? When are we done?

• If list is too small (or empty) to continue searching

• If item we’re searching for is the middle element

Review: Binary Search

mid = n//2

Check middle

def binarySearch(aList, item):

 """Assume aList is sorted."""

 n = len(aList)

 mid = n // 2

 # base case 1

 if n == 0:

 return False

 # base case 2

 elif item == aList[mid]:

 return True

 # recursive cases...

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Review: Binary Search

mid = n//2

If item < L[mid], then need to
search in L[:mid]

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Review: Binary Search

mid = n//2

If item > L[mid], then need to
search in L[mid+1:]

Review: Binary Search
def binarySearch(aList, item):

 """Assume aList is sorted."""

 n = len(aList)

 mid = n // 2

 # base case 1

 if n == 0:

 return False

 # base case 2

 elif item == aList[mid]:

 return True

 # recurse on left

 elif item < aList[mid]:

 return binarySearch(aList[:mid], item)

 # recurse on right

 else:

 return binarySearch(aList[mid + 1:], item)

Technically, there is one
small problem with our

implementation. List splicing
is actually O(n)! See Jupyter

for improvement.

• Binary search: recursive search algorithm to search in a sorted array list

• Similar to how we search for a word in a (physical) dictionary

• Takes time since we are reducing half of the search space on
each step:

• Much more efficient than a linear search

• Note: grows much more  
slowly compared to as gets large

O(log n)
n → n/2 → n/4 → n/8 → ⋯ → n/2i = 1

log n
n n

Review: Binary Search

 (1 billion) ~ 30log2

But how expensive is sorting??

Sorting
Selection Sort

Sorting
• Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.

• There are many ways to solve this problem!

• Built-in sorting functions/methods in Python

• sorted(): function that returns a new sorted list

• sort(): method that mutates and sorts the list it’s called on

• Today: how do we design our own sorting algorithm?

• Question: What is the best (most efficient) way to sort items?

• We will use Big-O to find out!

n

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the
second position, and so on

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Find the smallest element and move it to the first position and repeat

Selection Sort
• Generalize: For each index in the list L, we need to find the min item

in L[i:] so we can replace L[i] with that item

• In fact we need to find the position minIndex of the item that is
minimum in L[i:]

• Reminder: how to swap values of variables a and b?

• Using tuple assignment in Python: a, b = b, a

• Or using a temp variable: temp = a; a = b; b = temp

• Let's implement this algorithm! (We won’t use recursion this time,
although we could…)

i

Selection Sort Code
def selectionSort(myList):

 """Selection sort of given list myList,

 mutates list and sorts using selection sort."""

 # find size

 n = len(myList)

 # traverse through all elements

 for i in range(n):

 # find min element in remaining unsorted list

 minIndex = i

 for j in range(i + 1, n):

 if myList[minIndex] > myList[j]:

 minIndex = j

 # swap min element with element at i

 myList[i], myList[minIndex] = myList[minIndex], myList[i]

>>> myList = [12, 2, 9, 4, 11, 3, 1, 7, 14, 5, 13]

>>> selectionSort(myList)

>>> print(myList)

[1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14]

Selection Sort Analysis
• For , inner loop checks items

• For , inner loop checks items
• ...

• For , inner loop checks items

i = 0 n − 1

i = 1 n − 2

i = n − 1 0

 # traverse through all elements

 for i in range(n):

 # find min element in remaining unsorted list

 minIndex = i

 for j in range(i + 1, n):

 if myList[minIndex] > myList[j]:

 minIndex = j

 # swap min element with element at i

 myList[i], myList[minIndex] = myList[minIndex], myList[i]

Selection Sort Analysis
• Within the inner loop we have steps - just 1 comparison (constant)

• Thus overall number of steps is sum of inner loop steps

• What is this sum? (Math 200??)

O(1)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1

 # traverse through all elements

 for i in range(n):

 # find min element in remaining unsorted list

 minIndex = i

 for j in range(i + 1, n):

 if myList[minIndex] > myList[j]:

 minIndex = j

 # swap min element with element at i

 myList[i], myList[minIndex] = myList[minIndex], myList[i]

Selection Sort Analysis

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:
• O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)

Sorting
Merge Sort

Towards an AlgorithmO(n log n)
• There are other sorting algorithms that compare and rearrange elements in

different ways, but are still steps

• Any algorithm that takes steps to move each item positions (in
the worst case) will take at least steps

• To do better than , we need to move an item in fewer than steps

• We can sort in time if we are clever : Merge sort algorithm
(Invented by John von Neumann in 1945)

O(n2)

n n
O(n2)

n2 n

O(n log n)

• If we split the list in half, sorting the left and right half are smaller
versions of the same problem

• Algorithm:

• (Divide) Recursively sort left and right half (O(log n))

• (Conquer) Merge the sorted halves into a single sorted list (O(n))

• (More info in extra slides at the end of this lecture!)

Merge Sort: Basic Idea

L
m = n//2

0 n = len(L)

12 2 9 4 11 3 1 7 14 5 13

Selection vs Merge Sort in Practice
• Selection sort is and merge sort is time
• How different is the performance in practice?
• Example: wordList is 12,000 words from the book Pride & Prejudice

• miniList and medList are the first 500 and 7000 words
respectively

O(n2) O(n log n)

wordList = []

with open('prideandprejudice.txt') as book:

 for line in book:

 line = line.strip().split()

 wordList.extend(line)

print(len(wordList))

>>> miniList = wordList[:500]

>>> medList = wordList[:7000]

122089

Selection vs Merge Sort in Practice
• miniList: 500 words
• medList: 7000 words
• wordList: ~12000 words

~5 mins vs 1/5 sec!

Summary: Searching and Sorting
• We have seen algorithms that are

• : binary search in a sorted list

• : linear searching in an unsorted list

• : merge sort

• : selection sort
• Important to think about  

efficiency when writing code!

O(log n)

O(n)

O(n log n)

O(n2)

O(1)

O(n)

O(n2)

O(log n)

O(n log n)

The	end!

Leftover Slides

• Problem. Given two sorted lists a and b, how quickly can we merge
them into a single sorted list?

Merging Sorted Lists

merged list c

a

122 94 11

i

31 7 145 13

b

j

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

2 3

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c

• No, b[j] appended to c

2 3 54 7 9 11 12 13 14

• Walk through lists
maintaining current position of
indices

• Compare and ,
whichever is smaller gets put in
the spot of

• Merging two sorted lists into
one is an step algorithm!

• Can use this merge procedure
to design our recursive merge
sort algorithm!

a, b, c

i, j, k

a[i] b[j]

c[k]

O(n)

Merging Sorted Lists

• Base case: If list is empty or
contains a single element: it is
already sorted

• Recursive case:
• Recursively sort left and

right halves
• Merge the sorted lists into a

single list and return it
• Question:

• Where is the sorting
actually taking place?

Merge Sort Algorithm

4 11 1 7 5 13

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13

