
CS134:  
Searching



Announcements & Logistics
• Lab 8 returned!  

• Lab 9 part 1 feedback returned:  let us know if you have any questions!

• Lab 9 Boggle  

• Completed version of all classes due next Wed/Thur
• Make sure you thoroughly test your code

Do You Have Any Questions?



Last Time:  Iterators
• Learned about iterables and iterators 

• An object is considered iterable if it supports the iter() function 
(special method __iter__ is defined): e.g, lists, strings, tuples

• When an iterable is passed to the iter() function, it creates and 
returns an iterator 

• An iterator object can generate values on demand 

• Supports the next() function (and __next__ method) 
which simply provides the "next" value in the sequence



Today and Next Week
• Briefly introduce how we measure efficiency in Computer Science

• Analyze the efficiency of some of our algorithms and data structures

• Next Monday:

• Evaluate sorting algorithms and their efficiency 

• Last 5 classes:  Introduction to Java (and Python review)

• Computational thinking and logic stays the same across 
programming languages

• We will focus on how the two languages are different in their 
syntax and structure



Measuring Efficiency



Measuring Efficiency
• How do we measure the efficiency of our program?

• We want programs that run "fast"
• How do measure?

• One idea:  use a stopwatch to see how long it takes
• Is this a good method?  
• What is the stopwatch really measuring?
• How long does this piece of code takes on this machine on this 

particular input 

• Machine (and input) dependent
• We want to evaluate our program’s efficiency, not the machine's speed

• Cannot make any general conclusions using a stopwatch
• Might not tell us how fast the program runs on different inputs/machines



Efficiency Metric: Goals
We want a method to evaluate efficiency that:

• Is machine and language independent 

• Analyze the algorithm (problem-solving approach) 

• Provides guarantees that hold for different types of inputs 

• Some inputs may be "easy" to work with while others are not

• Captures the dependence on input size 

• Determine how the performance "scales" when the input gets bigger

• Captures the right level of specificity 

• We don't want to be too specific (cumbersome)

• Measure things that matter, ignore what doesn't



Platform/Language Independent
Machine and language independence 

• We want to evaluate how good the algorithm is, rather than how 
good the machine or implementation is

• Basic idea: Count the number of steps taken by the algorithm
• Sometimes referred to as the "running time"



Worst-Case Analysis
• We can't just analyze our algorithm on a few inputs and declare victory

• Best case.  Minimum number of steps taken over all possible 
inputs of a given size

• Average case.  Average number of steps taken over all possible 
inputs of a given size

• Worst case.  Maximum number of steps taken over all possible 
inputs of a given size.

• Benefit of wort case analysis:

• Regardless of input size, we can conclude that the algorithm always 
does at least as well as the pessimistic analysis



Dependence on Input Size
• We generally don't care about performance on "small inputs"
• Instead we care about "the rate at which the completion time grows" 

with respect to the input size
• For example, consider the area of a square or circle: while the formula 

for each is different, they both grow at the same rate wrt radius
• doubling radius increases area by 4x, tripling increases by 9x



Dependence on Input Size:  Big-O
• Big-O notation in Computer Science is a way of quantifying (in fact, 

upper bounding) the growth rate of algorithms/functions wrt input size
• For example: 

• A square of side length  has area . 

• A circle of radius  has area .

r O(r2)

r O(r2)



Dependence on Input Size:  Big-O
• Big-O notation captures the rate at which the number of steps taken 

by the algorithm grows wrt size of input , "as  gets large"

• Not precise by design, it ignores information about:

• Constants (that do not depend on input size ), e.g. 

• Lower-order terms: terms that contribute to the growth but are 
not dominant:  

• Powerful tool for predicting performance behavior :  focuses on what 
matters, ignores the rest

• Separates fundamental improvements from smaller optimizations

• We won't study this notion formally:  covered in CS136 and CS256!

n n

n 100n = O(n)

O(n2 + n + 10) = O(n2)



Understanding Big-O
• Notation:   often denotes the number of elements (size)

• Constant time or :  when an operation does not depend on the 
number of elements, e.g.

• Addition/subtraction/multiplication of two values, or defining a 
variable etc are all constant time

• Linear time or :  when an operation requires time proportional 
to the number of elements, e.g.:

for item in seq:  
   <do something> 

• Quadratic time or :   nested loops are often quadratic, e.g.,
for i in range(n):
   for j in range(n):
        <do something>

n

O(1)

O(n)

O(n2)



• Notation:   often denotes the number of elements (size)
• Our goal:  understand efficiency of some algorithms at a high level 

n

Big-O:  Common Functions

O(1)

O(n)

O(n2)

O(log n)



Lists vs. Linked Lists
Efficiency Trade Offs



Lists vs Linked Lists
• Linked Lists:  “pointer-based” data structure, items need not be 

contiguous in memory

• Lists:  index-based data structure (sometimes called arrays), items are 
always stored contiguously in memory

5 3 11 None
_value 

_rest 

_value 

_rest 

... 

... 

head 

5 3 11 ... 

0 1 2



Lists vs Linked Lists
• Linked Lists:   Can grow and shrink on the fly:  do not need to know 

size at the time of creation (therefore no wasted space!)

• Lists:  Need to know size (or use some default value) at the time of 
creation, can waste space by leaving room for future insertions

5 3 11 None
_value 

_rest 

_value 

_rest 

... 

... 

head 

5 3 11 ... 

0 1 2



An Aside: What exactly is Python's list?
• It's complicated:  Python's list implementation is a hybrid

• For today's lecture, we will assume its an array-based structure (lower 
picture)

5 3 11 None
_value 

_rest 

_value 

_rest 

... 

... 

head 

5 3 11 ... 

0 1 2



Array vs Linked Lists
• Inserts at the beginning:  which one is better?

5 3 11 None
_value 

_rest 

_value 

_rest 

... 

... 

head 

5 3 11 ... 

0 1 2



Array vs Linked Lists
• Linked list steps:  

• Point head to new element
• Point rest of new element to old list
• These steps don't depend on size of list

• Therefore, run-time is constant, that is,  timeO(1)

5 3 11 None

_value 

_rest 

_value 

_rest 

... 

... 

head 

8
_rest 

_value 



Array vs Linked Lists
• Now consider an array-based list

• To insert at index 0, we need to shift every element over by one spot 

• This takes time proportional to the size:  linear time or  

• So when are arrays more efficient?

• When indexing elements:  they give direct access  

• Linked list:  we need to traverse the list to get to the element  

O(n)

O(1)

O(n)

5 3 11 ... 

0 1 2 3

8



So Which is Better?
• It depends!
• Time-space tradeoff: try to find a balance between time efficiency 

and space efficiency 
• Think about what list operations are required the most for your 

program
• Choose accordingly



Searching in an Array



def linearSearch(val, myList): 
    for elem in myList: 
       if elem == val: 
          return True 
    return False

Might return early if val is first item in 
myList, but we are interested in the 

worst case analysis; this happens if 
val is not in myList at all

• Let us discuss how quickly we can search for an item in an array-based list

Searching in an Array

5 3 11 ... 

0 1 2 3

8



Searching in an Array
• In the worst case, we have to walk through the entire sequence

• Takes linear time, or O(n)

5 3 11 ... 

0 1 2 3

8

def linearSearch(val, myList): 
    for elem in myList: 
       if elem == val: 
          return True 
    return False

Might return early if val is first item in 
myList, but we are interested in the 

worst case analysis; this happens if 
val is not in myList at all



Searching in an Array
• Can we do better?

• Not if the elements are in arbitrary order

• What if the sequence is sorted?

• Can we utilize this somehow and search more efficiently?

5 7 11 ... 

0 1 2 3

3

How do we search for an item (say 10) in a sorted array?



Example:  Dictionary
• How do we look up a word in a (physical) dictionary?

• Words are listed in alphabetical order



Example:  Dictionary
Finding the definition of "octopus"

Open pages at ~half, is word 
on left or right?

Open pages at ~half, is word 
on left or right?

Open pages at ~half, is 
word on left or right?

Open pages at ~half, is word 
on left or right?

Find the word!



• Goal:   Analyze # pages we need to look at until we find the word

• We want the worst case:  possible to get lucky and find the word right 
on the middle page, but we don't want to consider luck!

• Each time we look at the “middle” of the remaining pages, the number of 
pages we need to look at is divided by 2

• A 1024-page dictionary requires at most 11 lookups:  
1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4, <2,  <1 page.

• Only needed to look at 11 pages out of 1024 !

• Challenge: What if we have an  page dictionary,  
what function of  characterizes the (worst-case)  
number of lookups?

n
n

How Good is This Method?



• Logarithms are the inverse function to exponentiation 

•  describes the exponent to which  must be raised to produce 

• That is, 

• Alternatively: 

•  (essentially) describes the number of times  must be divided 
by  to reduce it to below  

• For us, here’s the important takeaway:

• How many times can we divide  by  until we get down to 

•  

log2 n 2 n

2log2 n = n

log2 n n
2 1

n 2 1

≈ log2 n

Logarithms:  our favorite function



• The recursive search algorithm we described to search in a sorted 
array is called binary search 

• It is much, much more efficient than a linear search:   time 

• Note:  grows much more slowly compared to  as  gets large

• Lets implement this technique

O(log n)

log n n n

Binary Search



• Base cases?  When are we done?

• If list is too small (or empty)

• If item is the middle element 

Binary Search

mid = n//2

Check middle



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item < aList[mid], then need 
to search in aList[:mid]



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item > aList[mid], then need 
to search in aList[mid+1:]



Binary Search



The	end!


