
CS134:
Searching

Announcements & Logistics
• Lab 8 returned!

• Lab 9 part 1 feedback returned: let us know if you have any questions!

• Lab 9 Boggle

• Completed version of all classes due next Wed/Thur
• Make sure you thoroughly test your code

Do You Have Any Questions?

Last Time: Iterators
• Learned about iterables and iterators

• An object is considered iterable if it supports the iter() function
(special method __iter__ is defined): e.g, lists, strings, tuples

• When an iterable is passed to the iter() function, it creates and
returns an iterator

• An iterator object can generate values on demand

• Supports the next() function (and __next__ method)
which simply provides the "next" value in the sequence

Today and Next Week
• Briefly introduce how we measure efficiency in Computer Science

• Analyze the efficiency of some of our algorithms and data structures

• Next Monday:

• Evaluate sorting algorithms and their efficiency

• Last 5 classes: Introduction to Java (and Python review)

• Computational thinking and logic stays the same across
programming languages

• We will focus on how the two languages are different in their
syntax and structure

Measuring Efficiency

Measuring Efficiency
• How do we measure the efficiency of our program?

• We want programs that run "fast"
• How do measure?

• One idea: use a stopwatch to see how long it takes
• Is this a good method?
• What is the stopwatch really measuring?
• How long does this piece of code takes on this machine on this

particular input

• Machine (and input) dependent
• We want to evaluate our program’s efficiency, not the machine's speed

• Cannot make any general conclusions using a stopwatch
• Might not tell us how fast the program runs on different inputs/machines

Efficiency Metric: Goals
We want a method to evaluate efficiency that:

• Is machine and language independent

• Analyze the algorithm (problem-solving approach)

• Provides guarantees that hold for different types of inputs

• Some inputs may be "easy" to work with while others are not

• Captures the dependence on input size

• Determine how the performance "scales" when the input gets bigger

• Captures the right level of specificity

• We don't want to be too specific (cumbersome)

• Measure things that matter, ignore what doesn't

Platform/Language Independent
Machine and language independence

• We want to evaluate how good the algorithm is, rather than how
good the machine or implementation is

• Basic idea: Count the number of steps taken by the algorithm
• Sometimes referred to as the "running time"

Worst-Case Analysis
• We can't just analyze our algorithm on a few inputs and declare victory

• Best case. Minimum number of steps taken over all possible
inputs of a given size

• Average case. Average number of steps taken over all possible
inputs of a given size

• Worst case. Maximum number of steps taken over all possible
inputs of a given size.

• Benefit of wort case analysis:

• Regardless of input size, we can conclude that the algorithm always
does at least as well as the pessimistic analysis

Dependence on Input Size
• We generally don't care about performance on "small inputs"
• Instead we care about "the rate at which the completion time grows"

with respect to the input size
• For example, consider the area of a square or circle: while the formula

for each is different, they both grow at the same rate wrt radius
• doubling radius increases area by 4x, tripling increases by 9x

Dependence on Input Size: Big-O
• Big-O notation in Computer Science is a way of quantifying (in fact,

upper bounding) the growth rate of algorithms/functions wrt input size
• For example:

• A square of side length has area .

• A circle of radius has area .

r O(r2)

r O(r2)

Dependence on Input Size: Big-O
• Big-O notation captures the rate at which the number of steps taken

by the algorithm grows wrt size of input , "as gets large"

• Not precise by design, it ignores information about:

• Constants (that do not depend on input size), e.g.

• Lower-order terms: terms that contribute to the growth but are
not dominant:

• Powerful tool for predicting performance behavior : focuses on what
matters, ignores the rest

• Separates fundamental improvements from smaller optimizations

• We won't study this notion formally: covered in CS136 and CS256!

n n

n 100n = O(n)

O(n2 + n + 10) = O(n2)

Understanding Big-O
• Notation: often denotes the number of elements (size)

• Constant time or : when an operation does not depend on the
number of elements, e.g.

• Addition/subtraction/multiplication of two values, or defining a
variable etc are all constant time

• Linear time or : when an operation requires time proportional
to the number of elements, e.g.:

for item in seq:  
 <do something>

• Quadratic time or : nested loops are often quadratic, e.g.,
for i in range(n):
 for j in range(n):
 <do something>

n

O(1)

O(n)

O(n2)

• Notation: often denotes the number of elements (size)
• Our goal: understand efficiency of some algorithms at a high level

n

Big-O: Common Functions

O(1)

O(n)

O(n2)

O(log n)

Lists vs. Linked Lists
Efficiency Trade Offs

Lists vs Linked Lists
• Linked Lists: “pointer-based” data structure, items need not be

contiguous in memory

• Lists: index-based data structure (sometimes called arrays), items are
always stored contiguously in memory

5 3 11 None
_value

_rest

_value

_rest

...

...

head

5 3 11 ...

0 1 2

Lists vs Linked Lists
• Linked Lists: Can grow and shrink on the fly: do not need to know

size at the time of creation (therefore no wasted space!)

• Lists: Need to know size (or use some default value) at the time of
creation, can waste space by leaving room for future insertions

5 3 11 None
_value

_rest

_value

_rest

...

...

head

5 3 11 ...

0 1 2

An Aside: What exactly is Python's list?
• It's complicated: Python's list implementation is a hybrid

• For today's lecture, we will assume its an array-based structure (lower
picture)

5 3 11 None
_value

_rest

_value

_rest

...

...

head

5 3 11 ...

0 1 2

Array vs Linked Lists
• Inserts at the beginning: which one is better?

5 3 11 None
_value

_rest

_value

_rest

...

...

head

5 3 11 ...

0 1 2

Array vs Linked Lists
• Linked list steps:

• Point head to new element
• Point rest of new element to old list
• These steps don't depend on size of list

• Therefore, run-time is constant, that is, timeO(1)

5 3 11 None

_value

_rest

_value

_rest

...

...

head

8
_rest

_value

Array vs Linked Lists
• Now consider an array-based list

• To insert at index 0, we need to shift every element over by one spot

• This takes time proportional to the size: linear time or

• So when are arrays more efficient?

• When indexing elements: they give direct access

• Linked list: we need to traverse the list to get to the element

O(n)

O(1)

O(n)

5 3 11 ...

0 1 2 3

8

So Which is Better?
• It depends!
• Time-space tradeoff: try to find a balance between time efficiency

and space efficiency
• Think about what list operations are required the most for your

program
• Choose accordingly

Searching in an Array

def linearSearch(val, myList):
 for elem in myList:
 if elem == val:
 return True
 return False

Might return early if val is first item in
myList, but we are interested in the

worst case analysis; this happens if
val is not in myList at all

• Let us discuss how quickly we can search for an item in an array-based list

Searching in an Array

5 3 11 ...

0 1 2 3

8

Searching in an Array
• In the worst case, we have to walk through the entire sequence

• Takes linear time, or O(n)

5 3 11 ...

0 1 2 3

8

def linearSearch(val, myList):
 for elem in myList:
 if elem == val:
 return True
 return False

Might return early if val is first item in
myList, but we are interested in the

worst case analysis; this happens if
val is not in myList at all

Searching in an Array
• Can we do better?

• Not if the elements are in arbitrary order

• What if the sequence is sorted?

• Can we utilize this somehow and search more efficiently?

5 7 11 ...

0 1 2 3

3

How do we search for an item (say 10) in a sorted array?

Example: Dictionary
• How do we look up a word in a (physical) dictionary?

• Words are listed in alphabetical order

Example: Dictionary
Finding the definition of "octopus"

Open pages at ~half, is word
on left or right?

Open pages at ~half, is word
on left or right?

Open pages at ~half, is
word on left or right?

Open pages at ~half, is word
on left or right?

Find the word!

• Goal: Analyze # pages we need to look at until we find the word

• We want the worst case: possible to get lucky and find the word right
on the middle page, but we don't want to consider luck!

• Each time we look at the “middle” of the remaining pages, the number of
pages we need to look at is divided by 2

• A 1024-page dictionary requires at most 11 lookups:
1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4, <2, <1 page.

• Only needed to look at 11 pages out of 1024 !

• Challenge: What if we have an page dictionary,
what function of characterizes the (worst-case)
number of lookups?

n
n

How Good is This Method?

• Logarithms are the inverse function to exponentiation

• describes the exponent to which must be raised to produce

• That is,

• Alternatively:

• (essentially) describes the number of times must be divided
by to reduce it to below

• For us, here’s the important takeaway:

• How many times can we divide by until we get down to

•

log2 n 2 n

2log2 n = n

log2 n n
2 1

n 2 1

≈ log2 n

Logarithms: our favorite function

• The recursive search algorithm we described to search in a sorted
array is called binary search

• It is much, much more efficient than a linear search: time

• Note: grows much more slowly compared to as gets large

• Lets implement this technique

O(log n)

log n n n

Binary Search

• Base cases? When are we done?

• If list is too small (or empty)

• If item is the middle element

Binary Search

mid = n//2

Check middle

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item < aList[mid], then need
to search in aList[:mid]

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item > aList[mid], then need
to search in aList[mid+1:]

Binary Search

The	end!

