
CS134:
Iterators

Announcements & Logistics
• Lab 8 feedback coming soon! (Sorry!)

• Lab 9 Boggle

• Parts 3 (BoggleGame) due Nov 30/Dec 1

• Attendance in lab is optional next week

Do You Have Any Questions?

Last Time
• Started the implementation of our own linked list class

• Why? Help us understand what’s happening in Python's built-in classes

• A glimpse of data structure design (precursor to CS136)

• Implemented several special methods:
• __init__, __str__, __len__, __contains__ (in), __add__ (+)

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Today's Plan
• Wrap up our linked list class:

• __getitem__, __setitem__ ([] brackets to get/set value at index)

• Look at __eq__, prepend, append, insert

• Discuss how we can turn our LinkedList into an “iterable" object

• This will allow us to iterate over our lists in a for loop

• Implement more special methods: __iter__ and __next__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

[] Operator: __getitem__, __setitem__
• __getitem__(self, index) and  
__setitem__(self, index, val)

• In lists, we can get or set an item at a specific index using []

• get: val = mylist[1]
set: mylist[2] = newVal

• To support the [] operator in our LinkedList class, we need to
implement __getitem__ and __setitem__

• Basic idea:

• Walk out to the element at index

• Get or set value at that index accordingly

• Recursive!

• We can get the item at a specific index using the [] operator
(e.g., val = mylist[2])

def __getitem__(self, index):
 if index == 0:
 return self._value
 else:
 return self._rest[index - 1]

>>> myList = LinkedList(5, LinkedList(3, LinkedList(11)))
>>> print(myList[2])
11

__getitem__(2)
...
return LinkedList(3, LinkedList(11))[1]

__getitem__(1)
...
return LinkedList(11)[0]

__getitem__(0)
 if index == 0:

return LinkedList(11)._value

11

[] Operator: __getitem__, __setitem__

This is the same as
self._rest.__getitem__(index-1)

[] Operator: __getitem__, __setitem__
• We can also set the item at a specific index using the [] operator

(e.g., mylist[2] = newVal)

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

• We want to walk the lists and check the values

• Make sure the sizes of lists match, too

== Operator: __eq__
• __eq__(self, other)

• To support the == operator in our LinkedList class, we need to
implement __eq__

Useful list methods:
.append(), .prepend(), .insert()

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
None

val None
_value

_rest

• append(self, val)
• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

_re
st

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
val None
_value

_rest

• append(self, val)
• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

Useful List Method: append
• append(self, val)

• When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

• This entails setting the _rest attribute of the last element to be a
new LinkedList with the given value.

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself val

_value

_rest

old

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute points
to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
None

val
_value

_rest

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute points
to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
Noneval

_value

_rest

Useful List Method: insert
• insert(self, val, index)

• If the specified index is 0, we can just use the prepend method.

• Otherwise, we walk to the appropriate index in the list, and
perform the insertion

Iterating Over Our List

• We can iterate over a Python list in a for loop
• It would be nice if we could iterate over our LinkedList in a for loop
• This won’t quite work right now

Iterating Over Our List

Iterating Over Our List
• Currently, we can only indirectly iterate over our LinkedList using a loop

and a range object.

• We'd really like to iterate directly over the elements of the list (without
using a range)

• An aside: Given our LinkedList implementation, this loop is very
inefficient! Each call newList[i] walks the list out to index i each
time.
newList = LinkedList(5)
newList.append(10)
newList.append(42)

for i in range(len(newList)):
 print(newList[i])

5
10
42

Making our List Iterable
• What do we need to directly iterate over our linked list?

• We need to make our class iterable

• We need to implement the special methods __iter__ and
__next__

• First, let’s start with a few definitions

Making our List Iterable
• A Python object is considered iterable if it supports the iter()

function: that is, the special method __iter__ is defined

• All sequences in Python are iterable, e.g., strings, lists, ranges, tuples,
even files

• We can iterate over an iterable object directly in a for loop

• When an iterable object is passed to the iter() function, it
creates an iterator

• An iterator object can generate values from the sequence on demand

• This is accomplished using the next() function (and __next__
method) which simply provides the "next" value in the sequence

• Note: iterable is an adjective, iterator is a noun, iterate is a verb

Python's Built-in Iterable Types
• We can create iterators for lists/strings/

tuples by passing them to iter()
• Benefit? We can generate values from

the sequence on demand (one at a time)
• An iterator maintains “state” between

calls to next() (it remembers where
we are)

• Once all values in the sequence have
been iterated over, the iterator "runs
dry" (and becomes empty)

• We can only iterate over values once
(unless we create another iterator)

>>> charList = list("rain")
>>> print(charList)
['r', 'a', 'i', 'n']
>>> charIterator = iter(charList)
>>> next(charIterator)
'r'
>>> next(charIterator)
'a'
>>> next(charIterator)
'i'
>>> next(charIterator)
'n'
>>> next(charIterator)
Traceback:
 File "<stdin>", line 1
StopIteration

This means there are
no elements left!

Creating an Iterator
• To create an iterator for our class we need to implement two methods:

• __iter__() which is called to creates the iterator

• __next__() which is called to advance to the next value

• The key aspect of creating iterators: maintaining state to keep track of
where you are currently in the sequence (and what is the next value
that should be returned)

• Thus, __iter__() should always "reset" the current state to the
beginning of our list, and __next__() should update this state (i.e.,
move to the next element) each time its called

• Python for loops automatically (and implicitly) create an iterator and call
next() until the StopIteration exception is reached (see leftover
slides at the end for more info!)

Creating an Iterator for LinkedList
• First we add a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

Creating an Iterator for LinkedList
• First we add a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

Creating an Iterator for LinkedList
• First we add a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

Creating an Iterator for LinkedList
• First we add a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

Creating an Iterator for LinkedList
• First we add a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

This means there are
no elements left!

Using our New Iterable LinkedList

The	end!

Leftover Slides

For loop: Behind the Scenes
• A for loop in Python iterates directly over iterable objects. For example:

a simple for loop to iterate over a list
for item in numList:

 print(item)
• Behind the scenes, the for loop is simply a while loop in disguise, driving iteration

within a try-except statement. The above loop is really:

try:
 it = iter(numList)
 while True:
 item = next(it)

 print(item)
except StopIteration:
 pass

Call the iter method on object

Access the next item if it exists, then print it

This is a way to “hide” the error

As Aside: try-except blocks
• The try/except block has the following form:

try:
 <possibly faulty suite>

except <error>:

 <cleanup suite>
• The <possibly faulty suite> is a collection of statements that

has the potential to fail and generate an error.
• If the failure occurs, rather than causing the program to crash, the

statements inside the except branch are run

• You can even have more than one except, to handle different types of
errors

• Fortunately, Python handles this automatically for us in for loops!

What's Next in CS134
• Pre-midterm

• Emphasis on basics of programming (conditionals, loops, etc)
• Python's built-in data structures: lists, dictionaries, tuples, sets
• Scripts, modules, and functions

• Post-midterm
• Advanced programming topics
• Recursive functions
• Classes and OOP
• Recursive data structures

• Brief introduction to searching/sorting and efficiency analysis

• JAVA!

