
CS134:  
Recursion



Announcements & Logistics
• Lab 6 due Wed/Thurs at 10 pm

• Uses dictionaries, plotting, CSV files

• HW 6 will be available at noon today, due next Mon at 10pm

• Lab 5 will be returned today
• Midterms coming soon

• Mac users: Please do not update your Mac right now!
• Thanksgiving week: Optional lab attendance!

Do You Have Any Questions?



Last Time
• Worked through a simple example involving CSVs, dictionaries, and sets

• Discussed plotting with matplotlib

• Python is a powerful language for data processing and visualization



Where are We Going?
• First half of CS134:   learned the fundamentals of programming

• Functions, conditionals, loops, data types
• Built-in data structures and methods, sorting, plotting

• Looking ahead to the second half:  more emphasis on algorithmic and 
conceptual topics, more "computational thinking"
• Recursion  (~1 week)
• Defining our own data types using classes and objects (~2 weeks)

• Object oriented programming topics
• Building our own data types:  linked lists

• How does sorting really work/ what happens under the hood when 
Python is sorting?

• Continue developing our intuition regarding efficient vs inefficient code 



Today’s Plan

• What is recursion?
• Translating recursive ideas into recursive programs
• Examining the relation between recursive and iterative programs

• That is, how do recursive ideas relate to the iterative ideas (for loops, 
while loops) we’ve covered so far

Intro To Recursion



Recursion In Art and Pop Culture

• You’re already familiar with the idea 
of recursion, whether you’ve 
referred to it by that name or not!

• The Droste effect was one of the 
first explicit uses of recursion in an 
advertising medium in 1904

• The cocoa tin shows an image of a 
woman holding a platter with a tin 
that has an image of the same 
woman holding platter with a tin 
that has an image of…



Recursion In Art and Pop Culture

• Computer scientists were of course writing nerdy poems about recursion 
long before it was cool (and before we had computers). 

Great fleas have little fleas upon their backs to bite 'em,
And little fleas have lesser fleas, and so ad infinitum.
And the great fleas themselves, in turn, have greater fleas to go on;
While these again have greater still, and greater still, and so on.

— Siphonaptera,  A Budget Of Paradoxes
by Augustus De Morgan (1874)



Why Learn About Recursion?
• Recursion is an important problem solving paradigm that can not only 

lead to elegant code, it can also be used to do cool things.
• By the end of lab next week, you'll be able to use recursion to draw 

these beautiful pictures



So What Is Recursion?
• The easiest way to understand recursion is to first see examples of it
• Let’s start by examining a familiar recursive definition in mathematics
• The set of natural numbers can be defined as follows:

• 0 is a natural number
• If n is a natural number, then n+1 is a natural number

• Building blocks of a recursive idea:

1. Base case(s): 0 is a natural number

2. Recursive rule(s): If n is a natural number, then n+1 is a natural 
number



Exercise: Forming Base Case & Recursive Rules

• How would you define the concept of exponentiation an as a base case 
and a recursive rule (assuming n >= 0)

• A recursive definition:
• Base case:  
• Recursive rule:  



Exercise: Forming Base Case & Recursive Rules

• How would you define the concept of exponentiation an as a base case 
and a recursive rule (assuming n >= 0)

• A recursive definition:
• Base case:  a0 = 1
• Recursive rule:  an = a * an-1



Exercise: Forming Base Case & Recursive Rules
• Similarly, how would you define the concept of factorial n! as a base case 

and a recursive rule (assuming n >= 0)

• A recursive definition:
• Base case:  0! = 1
• Recursive rule:  n! = n * (n-1)!



Exercise: Forming Base Case & Recursive Rules
• Let’s examine a more complicated series known as the Fibonacci sequence.
• The Fibonacci sequence is a series of numbers that starts with 0 and 1, and 

where each successive number is the sum of the two preceding ones

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..


• A recursive definition:
• Base cases:  F0 = 0 and F1 = 1
• Recursive rule:  Fn = Fn-1 + Fn-2



Translating Recursive Ideas To Programs
• The beauty of recursion is that once you’ve written down your recursive 

idea, the programming part is (relatively) easy
• Ideally, you spend more time with pen and paper and front-load all your 

thinking into coming up with an appropriate base case and recursive rule
• Once you have these two ingredients, the implementation of recursive 

programs is fairly formulaic



Translating Recursive Ideas To Programs

• Recursive definition for an:
• Base case:  a0 = 1
• Recursive rule:  an = a * an-1



Translating Recursive Ideas To Programs

• Recursive definition for Fibonacci:
• Base cases:  F0 = 0, F1 = 1
• Recursion:  Fn = Fn-1 + Fn-2



Recursive Functions
• We have seen many examples of functions calling other functions
• A recursive function is a function that calls itself


• Recursive functions consist of one or more base cases and a set of 
recursive rules that successively simplify (or reduce) the problem 
until we reach one of the base cases


• Recursive rules must eventually take you to one of the base cases, else 
we end up with the recursive equivalent of an infinite loop

• We will compare recursive implementations to iterative 
implementations soon, but for now let’s take a deeper look into how 
recursion works



Infinite Recursion

• Recursive definition for an:
• Base case:  a0 = 1
• Recursive rule:  an = a * an-1

• This causes a RecursionError: maximum depth exceeded 
in comparison — notice we are no longer simplifying the problem in 
our recursive rule.


• What does this error mean?
• So far, we’ve simply believed in the magic of recursion but let’s take a closer 

look at what goes on in recursive function calls.



• A recursive approach to problem solving has two main parts:
• Base case(s).  When the problem is so small, we solve it directly, 

without having to reduce it any further (this is when we stop)
• Recursive step.  Does the following things: 

• Performs an action that contributes to the solution (take one step)
• Reduces the problem to a smaller version of the same problem, 

and calls the function on this smaller subproblem (break the 
problem down into a slightly smaller problem + one step)


• The recursive step is a form of "wishful thinking":  assume  
the unfolding of the recursion will take care of the smaller  
problem by eventually reducing it to the base case

• In CS136/256, this form of wishful thinking will  
introduced more formally as the inductive hypothesis

Recursive Approach to Problem Solving



• Let’s review a simple recursive function that gives us some intermediate 
feedback through print statements.

• Write a recursive function that prints integers from n down to 1

• Recursive definition of countdown:

• Base case:  n = 0,  return 0

• Recursive rule:  print(n), return countDown(n-1)

Understanding Recursive Functions

Perform one step Reduce the problem (or make 
the problem “smaller”)

Stop and don’t print



• Recursive definition of countdown:
• Base case:  n = 0, return 0

• Recursive rule:  print(n), return countDown(n-1)

Understanding Recursive Functions



• Recursive functions seem to be able to reproduce looping behavior 
without writing any loops at all

• To understand what happens behind the scenes when a function calls 
itself, let’s review what happens when a function calls another function

• Conceptually we understand function calls through the function frame 
model

Understanding Recursive Functions



Review:
Function Frame Model



• Consider a simple function square

• What happens when square(5) is invoked?

def square(x): 


return x*x

Review:  Function Frame Model



>>> square(5)

5

square(5)

x

return x * x 

25

Review:   
Function Frame Model



>>> square(5) + 4

• When we return from a function frame 
"control flow" goes back to where the 
function call was made

• Function frame (and the local variables 
inside it) are destroyed after the return 


• If a function does not have an explicit 
return statement, it returns None after all 
statements in the body are executed 5

square(5)

x

return 25

Return value replaces the 
function call

25

Summary:   
Function Frame Model



• How about functions that call other functions?

def sumSquare(a, b): 


return square(a) + square(b)

• What happens when we call sumSquare(5, 3)?

Review:   
Function Frame Model



sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b): 


return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sumSquare(5,3)



sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b): 


return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sumSquare(5,3)

25



sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b): 


return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sumSquare(5,3)

25

3

square(3)

x

return x * x 



sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b): 


return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sumSquare(5,3)

25

3

square(3)

x

return x * x 

9



sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b): 


return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sumSquare(5,3)

25

3

square(3)

x

return x * x 

9

34



Function Frame Model to 
Understand countDown



>>> val = countDown(5)
5

4

3

2

1

>>> val = countDown(4)
4

3

2

1

def countDown(n):

    '''Prints ints from n down to 1'''

    if n < 1: 

        return 0  

    else: 

        print(n)

        return countDown(n-1)



countDown(3)

3n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(2)

2n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(1)

1n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(0)

0n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

>>> val = countDown(3)
3

2
1

Base case reached!



3n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(2)

2n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(1)

1n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(0)

0n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

>>> val = countDown(3)
3

2
1

countDown(3)

Base case reached!



3n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(2)

2n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(1)

1n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(0)

0n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

>>> val = countDown(3)
3

2
1

countDown(3)

Base case reached!



3n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(2)

2n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(1)

1n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(0)

0n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

>>> val = countDown(3)
3

2
1

countDown(3)

Base case reached!



3n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(2)

2n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(1)

1n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

countDown(0)

0n

if n < 1:

    return 0

 else: 

    print(n)

    return countDown(n-1)

>>> val = countDown(3)
3

2
1

countDown(3)

Base case reached!









More Recursion: countUp



• Write a recursive function that prints integers from 1 up to n

• Recursive definition of countUp:
• Base case:  n = 0, return 0

• Recursive rule:  call countUp(n-1), print(n), return

countUp(n)

>>> countUp(5)

1

2

3

4

5

>>> countUp(4)

1

2

3

4

>>> countUp(3)

1

2

3


We swapped the order of recursing 
(calling countUp) and printing



• Note that unlike countDown(n) we moved our print 
statement to be after the recursive function call

• By printing after the recursive call, the print statement gets 
executed “on the way back” from recursive calls

countUp(n)



Function Frame Model to 
Understand countUp



countUp(3)

3n

if n < 1:

    return 0

 else: 

    result = countUp(n-1)

    print(n)

    return result

countUp(2)

2n

if n < 1:

    return 0

 else: 

    result = countUp(n-1)

    print(n)

    return result

countUp(1)

1n

if n < 1:

    return 0

 else: 

    result = countUp(n-1)

    print(n)

    return result

countUp(0)

0n

if n < 1:

    return 0

 else: 

    result = countUp(n-1)

    print(n)

    return result

Base case reached!

>>> countUp(3)

1
2
3



Recursion GOTCHAs!



• If the problem that you are solving recursively is not getting 

smaller, that is, you are not getting closer to the base case --- 
infinite recursion!

• Never reaches the base case 

GOTCHA #1

def countUpGotcha(n):

    '''Prints ints from 1 up to n’''

    if n <= 0:  # Base case

        return 0

    else:       # Recursive case 

        print(n)

        return countDownGotcha(n)

Subproblem not getting smaller!



• Missing base case/ unreachable base case--- another way to 
cause infinite recursion!

GOTCHA #2

def printHalvesGotcha(n): 

   """Prints n, n/2, down to ... 1"""

   if n > 0:

        print(n)

        return printHalvesGotcha(n/2)


Always true!



• In practice, the infinite recursion examples will terminate 
when Python runs out of resources for creating function 
call frames, leads to a "maximum recursion depth 
exceeded" error message

"Maximum recursion  
depth exceeded"



• Intro to turtle module and graphical recursion 
• Comparing iterative and recursive programs

Next Lectures



The	end!



Leftover Slides



Recursive Story



Steps for Recursion

•   Know when to stop

•   Decide how to take one step

•   Break the journey down into that step   
     plus a smaller journey
•



Once upon a time, there was a very surly monster being kept by a 
sorcerer. 
And there was a sorcerer’s apprentice, Sam.

One day, the sorcerer sent Sam down to the basement to ask the 
surly monster with some help on a task. 

 So Sam climbed down the stairs, and asked his question.



Monster, I need to know if 
any of the numbers in this list are odd:

[3142, 5798, 6550, 8914]



Sorry, I can only tell you if the first 
number of the list is odd.



But I need to know if any number in 
the list is odd, not just the first!



I’ll only look at the first number, but 
I’ll look at as many lists as you like.



?
What should Sam do?



[3142, 5798, 6550, 8914]

The first number is not odd.



[3142, 5798, 6550, 8914]

The first number is not odd.



[3142, 5798, 6550, 8914]

The first number is not odd.



[3142, 5798, 6550, 8914]

The first number is not odd.



[3142, 5798, 6550, 8914]

That's an empty list! 
It can't be odd!



None of the numbers the Sorcerer 
gave me were odd, thank you!



How can you know that? I only told 
you about the first number!



Why did this work?

The lists I gave you were:
[3142, 5798, 6550, 8914]

[5798, 6550, 8914]
[6550, 8914]

[8914]
[]



Recursive Function

The lists I gave you were:
[3142, 5798, 6550, 8914]

[5798, 6550, 8914]
[6550, 8914]

[8914]
[]

Function Call,  
List Mover

Base Case



Steps for Recursion
•   Know when to stop
•   Decide how to take one step
•   Break the journey down into that   
     step plus a smaller journey
•



Steps for Recursion
• When to stop?


• What is the one step?


• How to break the journey down?



Steps for Recursion
• When to stop?


• What is the one step?


• How to break the journey down?

• When list is empty


• Check the first list item


• Look at rest of list



Pseudocode
lst = [3142, 5798, 6550, 8914]
Find firstOdd(lst)


def firstOdd(lst):
  is lst not empty? 
  is first item odd? à return True

  is lst empty?
  empty list can't be odd! return False

  

Find firstOdd(rest of lst)



Python
lst = [3142, 5798, 6550, 8914]
firstOdd(lst)


def firstOdd(lst):
  if len(lst) > 0: 
  if lst[0]%2!=0:

     return True
  else:
  return False

  

return firstOdd(lst[1:])



Keep going!
Until you see "The End"!


