
CS134:  
Sequences & Loops



Announcements & Logistics
• Homework 3 is out on GLOW, due next Monday @ 10 pm

• Covers materials through last lecture (conditionals)

• Lab 1 graded feedback will be released today

• Instructions on how to view feedback on course webpage under Resources

• Lab 2 due today 10pm / tomorrow 10pm

• Rohit will be in Jeannie’s class on Friday

Do You Have Any Questions?



Last Time
• Looked at more complex decisions in Python

• Used Boolean expressions with and, or, not

• Chose between many different options in our code
• If elif else chained conditionals



Today’s Plan
• Start discussing sequences in Python

• Focus on strings today

• Move on to lists next Lecture
• Lab 3 covers both!

• Discuss basic strings operators: slicing [::], indexing [], in
• Learn about simple string methods

• Introduce for loops as a mechanism to iterate over sequences



Cover LOTS of new material today (and Friday)!

Don’t be afraid to ask for help!



Sequences in Python: Strings
• Sequences in Python represent ordered collections of elements:  

e.g., strings, lists, ranges, etc.

• Today we will focus on strings (type str) which are ordered 
sequences of individual characters

• Example:  word = "Hello"

• 'H' is the first character of word, 'e' is the second character, 
and so on

• In CS, we use zero-indexing, so we say that 'H' is at  
index 0,'e' is at index 1, and so on

• We can access each character of a string using these indices



How Do Indices Work?
• Can access elements of a sequence (such as a string) using its index

• Indices in Python are both positive and negative 

• Everything outside of these values will cause an IndexError.

"W i l l i a m s"
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

word = "Williams"



Accessing Elements of Sequences

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1>>> word = "Williams" 
>>> word[0] # character at 0th index?
'W'
>>> word[3] # character at 3rd index?
'l'
>>> word[7] # character at 7th index?
's'
>>> word[8] # will this work?

Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
IndexError: string index out of range



Length of a Sequence
• Python has a built-in len() function that computes the length of a 

sequence such as a string (or a list, which we will see in next lecture)

• For a string, len() simply returns the number of characters

• Thus, a string word has (positive) indices 
 0, 1, 2, ..., len(word)-1

>>> len("Williams")
8

>>> len("pneumonoultramicroscopicsilicovolcanoconiosis")
45



Negative Indexing

"W i l l i a m s"
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

• Negative indexing starts from -1, and provides a handy way to access 
the last character of a non-empty sequence without knowing its length

Note: Most other languages do not support negative indexing!

>>> word = "Williams" 
>>> word[-1]
's'



Slicing Sequences
• We can extract subsequences of a sequence using the slicing operator [:]

• For a given sequence var, var[start:end:step] returns a new 
sequence starting at index  ‘start’ (inclusive), ending at index  ‘end’ (exclusive), 
using an increment of ‘step’

• Example: Suppose we want to extract the substring "Williams" from 
"Williamstown" using slicing operator [:] 

• Note: Many more examples in Jupyter notebook!

>>> place = "Williamstown" 
>>> # return the sequence from 0th index up to 
>>> # (not including) 8th
>>> place[0:8:1]
'Williams'



Slicing Sequences: Using Step
• The (optional) third step parameter to the slicing operator determines in 

what direction to traverse, and whether to skip any elements while 
traversing and creating the subsequence

• By default, start = 0, end = len(), step = +1 (which means 
move left to right in increments of one)

• We can use other step parameters to obtain new sliced sequences

>>> place = "Williamstown" 
>>> place[:8:1] # start is 0, end is 8, step is +1
'Williams'
>>> place[:8:2] # start is 0, end is 8, step is +2
'Wlim'
>>> place[::2] # start is 0, end is 12, step is +2
'Wlimtw'



Slicing Sequences: Optional Step
• When the step parameter is set to a negative value it gives a nifty way to 

reverse sequences

• Note: start and end are interpreted “backwards” when using a 
negative step!

'W i l l i a m s t o w n’
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

8 9 10 11

-12 -11-10 -9

>>> place = "Williamstown" 
>>> place[::-1] # reverse the sequence
'nwotsmailliW'
>>> place[::-2]
'nosali'
>>> place[8:0:-1]
'tsmailli'



Testing Membership: in Operator
• The in operator in Python is used to test if a given sequence is a 

subsequence of another sequence; returns True or False

>>> "Williams" in "Williamstown"
True

>>> "W" in "Williams"
True

>>> "w" in "Williams" # capitalization matters
False

>>> "liam" in "WiLLiams" # will this work?
False



String Methods: upper(), lower()
• Python provides several convenient methods for manipulating strings

• Methods are like functions, but are applied to specific variables using dot 
notation: var.method() (more info on methods coming soon!)

• Example: The upper() and lower() string methods convert a string 
to upper or lowercase respectively; these methods return a new string

>>> message = "HELLLOOOO…!!!" 
>>> message.lower() # leaves non-alphabets the same
'hellloooo…!!!'

>>> song = "$$ la la la laaa la $$..." 
>>> song.upper()
'$$ LA LA LA LAAA LA $...'



isVowel() function
• Consider two versions of an isVowel() function that takes a character 

(a string) as input and returns whether or not it is a vowel

• Ignore case by converting to lowercase using str.lower() method

• Use in operator to simplify code (fewer boolean expressions)



Iteration Motivation:  Counting Vowels
• Problem:  Write a function countVowels() that takes a string word 

as input and returns the number of vowels in the string (an int)

• We can use our isVowel() function to help us 

def countVowels(word): 

     '''Returns number of vowels in the word''' 

     pass 

>>> countVowels("Williamstown") 

4 

>>> countVowels("Ephelia") 

4



First Attempt with Conditionals
• Using conditionals as shown is 

repetitive and does not generalize 
to arbitrary length words

• Recall that val += 1 is shorthand 
for       val = val + 1 

• We need something else that allows us 
to “loop” over the characters in an 
arbitrary input string

word = "Williams" 
counter = 0 
if isVowel(word[0]): 

counter += 1 
if isVowel(word[1]): 

counter += 1 
if isVowel(word[2]): 

counter += 1 
if isVowel(word[3]): 

counter += 1 
if isVowel(word[4]): 

counter += 1 
if isVowel(word[5]): 

counter += 1 
if isVowel(word[6]): 

counter += 1 
if isVowel(word[7]): 

counter += 1 
print(counter) 
3



For Loops



Iterating with for Loops
• One of the most common ways to manipulate a sequence is to 

perform some action for each element in the sequence

• This is called looping or iterating over the elements of a sequence

• Syntax of a for loop: 

for var in seq:

     # body of loop

     (do something)

var is called the loop variable

seq is a sequence (for example, a string)



Iterating with for Loops
• As the loop executes, the loop variable (char in this example) takes 

on the value of each of the elements of the sequence one by one
>>> # simple example of for loop 
>>> word = "Williams" 

>>> for char in word: 
... print(char) 

W 
i 
l 
l 
i 
a 
m 
s 



Counting Vowels
• We can use a for loop to implement our countVowels() function

• Notice how count “accumulates” values in the loop

• We call count an accumulation variable



• How are the local variables updated as the loop runs? 

  def countVowels(word):

     '''Returns number of vowels in the word'''

     count = 0

     for char in word:

         if isVowel(char):

              count += 1

     return count
count 0

'o''B' 's' 't' 'o' 'n'

countVowels('Boston')

word 'Boston'

Counting Vowels:  Tracing the Loop

charLoop variable



• How are the local variables updated as the loop runs? 

  def countVowels(word):

     '''Returns number of vowels in the word'''

     count = 0

     for char in word:

         if isVowel(char):

              count += 1

     return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels:  Tracing the Loop

charLoop variable



• How are the local variables updated as the loop runs? 

  def countVowels(word):

     '''Returns number of vowels in the word'''

     count = 0

     for char in word:

         if isVowel(char):

              count += 1

     return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels:  Tracing the Loop

charLoop variable



• How are the local variables updated as the loop runs? 

  def countVowels(word):

     '''Returns number of vowels in the word'''

     count = 0

     for char in word:

         if isVowel(char):

              count += 1

     return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels:  Tracing the Loop

charLoop variable



• How are the local variables updated as the loop runs? 

  def countVowels(word):

     '''Returns number of vowels in the word'''

     count = 0

     for char in word:

         if isVowel(char):

              count += 1

     return count
count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels:  Tracing the Loop

charLoop variable



• How are the local variables updated as the loop runs? 

  def countVowels(word):

     '''Returns number of vowels in the word'''

     count = 0

     for char in word:

         if isVowel(char):

              count += 1

     return count
count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels:  Tracing the Loop

charLoop variable



Exercise: 
Count Characters



Exercise: Count Characters
• Define a function countChar() that takes two arguments, a character and 

a word (both strings), and returns the number of times (int) that character 
appears in the word (ignoring case). 

def countChar(char, word):

    '''Counts # of times char appears in word'''

     pass

>>> countChar('m', "ammonia")

2

>>> countChar('a', "Alabama")

4

>>> countChar('a', "rhythm")

0



Exercise: Count Characters
• Define a function countChar() that takes two arguments, a character and 

a word (both strings), and returns the number of times (int) that character 
appears in the word (ignoring case).

def countChar(char, word):

    '''Counts # of times char appears in word'''

     count = 0            # initialize accumulation var

for letter in word: # letter is the loop variable

         if char.lower() == letter.lower():

    count += 1     # increment count (accumulate)

      return count



Exercise: 
Vowel Sequences



Exercise:  Vowel Sequences
• Define a function vowelSeq() that takes a string word as input and returns a 

string containing all the vowels in word in the same order as they appear.

def vowelSeq(word):

    '''Returns the vowel subsequence in word'''

     pass

>>> vowelSeq("Chicago")

'iao'

>>> vowelSeq("protein")

'oei'

>>> vowelSeq("rhythm")

'' What might be other good values to test edge cases?



Exercise:  Vowel Sequences
• Define a function vowelSeq() that takes a string word as input and returns a 

string containing all the vowels in word in the same order as they appear.
• Accumulation variables don’t have to be counters!  Can accumulate strings as well

def vowelSeq(word):

    '''returns the vowel subsequence in word'''

    vowels = ""            # accumulation variable

    for char in word:      # char is loop variable

        if isVowel(char):  # if char is a vowel

            vowels += char # accumulate 

    return vowels



Code from today can be 
found in sequenceTools.py


