Dynamic Programming III: Knapsack Problem
Admin

• Next Monday will be an activity day
 • Practice dynamic programming w.r.t. graphs
 • Use any extra time in activity period to work on problem set & ask questions
Knapsack Problem

Further Reading: Chapter 6.4, KT
Knapsack Problem

Problem. Pack a knapsack to maximize the total item value

- There are n items, each with weight w_i and value v_i:
 \[I = \{(v_1, w_1), \ldots, (v_n, w_n)\} \]

- Knapsack has total capacity C

- For any set of items T they fit in the Knapsack iff
 \[\sum_{i \in T} w_i \leq C \]

- **Goal:** Find subset S of items that fit in the knapsack (satisfy the capacity constraint) and maximize the total value:
 \[\sum_{i \in S} v_i \]

- **Assumption.** All weights and values are non-negative integers
Let’s first explore **greedy** solutions to the problem.

Consider the following problem instance:

- Ideas for what to be greedy about?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>v_i</td>
<td>w_i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Knapsack instance
(weight limit $C = 11$ kg)
Knapsack Problem

Idea 1: Pick the most expensive stuff we can!

- **Algorithm**: greedily pick the highest value item that fits.

<table>
<thead>
<tr>
<th></th>
<th>Value (v_i)</th>
<th>Weight (kg w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Total value: 35
Utilized capacity: 10 kg

Knapsack instance
(weight limit $C = 11$ kg)
Knapsack Problem

Idea 2: Pick the lightest stuff we can!

- **Algorithm**: greedily pick the lowest weight item that fits.

<table>
<thead>
<tr>
<th></th>
<th>v_i</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Total value: 25
Utilized capacity: 9 kg

Knapsack instance
(weight limit $C = 11$ kg)
Knapsack Problem

Idea 3: Pick the heaviest stuff we can!

- **Algorithm**: greedily pick the highest weight item that fits.

<table>
<thead>
<tr>
<th></th>
<th>v_i</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Total value: $35
Utilized capacity: 10 kg

Knapsack instance
(weight limit $C = 11$ kg)
Knapsack Problem

Other ideas?

Spoiler: Greedy doesn’t work! What is optimal in this instance?

- Optimal packing is \(\{i_3, i_4\}\): value $40 (and weight 11)

How many packings must we consider in an **exhaustive** search?

<table>
<thead>
<tr>
<th>(i)</th>
<th>(v_i)</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>$6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>$18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>$22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>$28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

knapsack instance
(weight limit \(W = 11\))

Creative Commons Attribution-Share Alike 2.5 by Dake
Exponential Possibilities

Given S items, how many subsets of items are there in total?

- 2^S: there are an exponential number of possibilities

- Dynamic programming trades off space for time, and through memoization, we get an (interestingly) efficient solution!

<table>
<thead>
<tr>
<th></th>
<th>v_i</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$$$1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>$$$6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>$$$18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>$$$22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>$$$28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

knapsack instance
(weight limit $W = 11$)
Recipe for a Dynamic Program

• **Formulate the right subproblem.** The subproblem must have an optimal substructure

• **Formulate the recurrence.** Identify how the result of the smaller subproblems can lead to that of a larger subproblem

• **State the base case(s).** The subproblem thats so small we know the answer to it immediately!

• **State the final answer.** (In terms of the subproblem)

• **Choose a memoization data structure.** Where are you going to store already computed results? (Usually a table)

• **Identify evaluation order.** Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order

• **Analyze space and running time.** As always!
Towards a Subproblem

Previously, our DP has tracked a value instead of a set.

- **Idea 1**: Keep track of current capacity c, where $0 \leq c \leq C$

- **Subproblem**: Let $T[c]$ denote the value of the optimal solution that uses capacity $\leq c$.

- **Optimal solution**: $T[C]$

- **Recurrence**: Not obvious with just capacities.

 - Why is this a challenge?
Subproblems and Optimality

When items are selected, we need to fill the remaining capacity optimally

- **Challenge**: the subproblem associated with a given remaining capacity can be solved in different ways

- In both cases, remaining capacity: 11 kg, but items left are different
- Using just capacity might not be enough. Perhaps a 2D table can capture capacity AND items?
Subproblem: Optimal Substructure
Subproblem

OPT(i, c): value of optimal solution using items $\{1, 2, \ldots, i\}$ with total capacity $\leq c$, for $1 \leq i \leq n$, $0 \leq c \leq C$

Final answer

OPT(n, C)

Consider all n items, consider full capacity C
Base Cases

$n \times C$: Are there any rows/columns can we fill immediately?

- What about the first column corresponding to item 1?

$OPT(1, c)$: Value of optimal solution that uses item 1 and has total capacity at most c

- For $i = 1; c \in \{1, 2, \ldots, C\}$ we can fill out the first column as:

\[
\begin{align*}
OPT(1, c) &= v_1 \text{ if } c \geq w_1 \\
OPT(1, c) &= 0 \text{ if } c < w_1
\end{align*}
\]

- Item 1 fits, add its value v_1
- Item 1 does not fit, value of empty knapsack is 0
Base Cases

Are there any rows/columns can we fill immediately?

- What about the first row corresponding to capacity 0?
- \(\text{OPT}(i, 0) \): Value of optimal solution that uses first \(i \) items and has total capacity at most 0
- For \(i = 1, 2, \ldots, n \) we can fill out the first row as:

\[
\text{OPT}(i, 0) = 0
\]

Items 1\ldots i do not fit, value of empty knapsack is 0
Optimal Substructure

- \(\text{OPT}(i, c) \): Let us try to construct the optimal solution that uses items \(\{1, 2, \ldots, i\} \) and capacity at most \(c \)
- What are the possibilities for the last \(i^{th} \) item:
 - Either item \(i \) is in the optimal solution or not
 - We must consider both cases
- **Case 1.** Suppose item \(i \) is **not** in the optimal solution, what is the optimal way to solve the remaining problem?
 - \(\text{OPT}(i, c) = \text{OPT}(i - 1, c) \)
 - Item \(i \) is left out, use best solution that considers items \(1 \ldots (i - 1) \) for the same capacity
Optimal Substructure

• **OPT**(i, c): Let us try to construct the optimal solution that uses items \{1, 2, ..., i\} and capacity at most c

• What are the possibilities for the last i^{th} item:
 • Either item i is in the optimal solution or not
 • We must consider both cases

• **Case 2.** Suppose item i is in the optimal solution, what is the recurrence of the optimal solution?
 • **OPT**(i, c) = v_i + **OPT**(i - 1, c - w_i)
 • This case only possible if c \geq w_i
Final Recurrence

For $1 \leq i \leq n$ and $1 \leq c \leq C$, we have:

$$
\text{OPT}(i, c) =
\max \{ \text{OPT}(i - 1, c), v_i + \text{OPT}(i - 1, c - w_i) \}
$$

- **Memoization structure**: We store $\text{OPT}[i, c]$ values in a 2-D array or table using space $O(nC)$
- **Evaluation order**: In what order should we fill in the table?
 - Row-major order (row-by-row)
Working Through An Example

\[
\text{OPT}(i, c) = \begin{cases}
v_i & \text{if } c \geq w_i \\
0 & \text{if } c < w_i
\end{cases}
\]

\[
\text{OPT}(i, c) = \max\{\text{OPT}(i - 1, c), v_i + \text{OPT}(i - 1, c - w_i)\}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(v_i)</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1)</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>$6)</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>$18)</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>$22)</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>$28)</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

knapsack instance (weight limit \(W = 11\))
<table>
<thead>
<tr>
<th></th>
<th>c=0</th>
<th>c=1</th>
<th>c=2</th>
<th>c=3</th>
<th>c=4</th>
<th>c=5</th>
<th>c=6</th>
<th>c=7</th>
<th>c=8</th>
<th>c=9</th>
<th>c=10</th>
<th>c=11</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>i=2</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>i=3</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>i=4</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>i=5</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>
Running Time

• Time to fill out a single table cell? \(O(1) \)

• How many cells are there in our table? \(O(nC) \)

• Total cost? \(O(nC) \)
Running Time

• Is $O(nC)$ polynomial? By which I mean polynomial in the size of the input

• What is the input? n items, plus the integer C
 • We need $O(n)$ size to store n items
 • How much space to store integer C? $\log_2 C$ bits

• So, is $O(nC)$ polynomial in the input size?
 • No! One table dimension depends on value of input, not size needed to represent it: $C = 2^{\log_2 C}$
 • “Pseudopolynomial” - polynomial in the value of the input
Recipe for a Dynamic Program

- **Formulate the right subproblem.** The subproblem must have an optimal substructure.

- **Formulate the recurrence.** Identify how the result of the smaller subproblems can lead to that of a larger subproblem.

- **State the base case(s).** The subproblem that's so small we know the answer to it!

- **State the final answer.** (In terms of the subproblem)

- **Choose a memoization data structure.** Where are you going to store already computed results? (Usually a table)

- **Identify evaluation order.** Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order.

- **Analyze space and running time.** As always!
Acknowledgments

• Some of the material in these slides are taken from

 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)

 • Shikha Singh