Log-Structured Merge Trees

CSCI 333
Williams College
How Should I Organize My Stuff (Data)?
Different people approach the problem differently…

[https://pbfcomics.com/comics/game-boy/]
How Should I Organize My Data?

“Logging”

“Indexing”
How Should I Organize My Data?

Logging

Inserting: Append at end of log

Searching: Scan through entire log

Indexing

Inserting: Insert at leaf (traverse root-to-leaf path)

Searching: Locate in leaf (traverse root-to-leaf path)
How Should I Organize My Data?

<table>
<thead>
<tr>
<th></th>
<th>Logging</th>
<th>Indexing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inserting</td>
<td>$O(1/B)$</td>
<td>$O(\log_B N)$</td>
</tr>
<tr>
<td>Searching</td>
<td>$O(N/B)$</td>
<td>$O(\log_B N)$</td>
</tr>
</tbody>
</table>

Assuming B-tree
Are We Forced to Choose?

It appears we have a tradeoff between insertion and searching

- **B-trees have**
 - fast searches: $O(\log_B N)$ is the optimal search cost
 - slow inserts

- **Logging has**
 - fast insertions
 - slow searches: cannot get worse than exhaustive scan
B-tree searches are optimal

B-tree updates are not

• We want a data structure with inserts that beat B-tree inserts without sacrificing on queries

> This is the promise of write-optimization
Data structure proposed by O’Neil, Cheng, and Gawlick in 1996
 • Uses write-optimized techniques to significantly speed up inserts

Hundreds of papers on LSM-trees (innovating and using)

To get some intuition for the data structure, let's break it down

 Log-structured • Merge • Tree
Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of logical ordering
Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of logical ordering

Merge

• As data evolves, sequentially written runs of key-value pairs are merged
 ▸ Runs of data are indexed for efficient lookup
 ▸ Merges happen only after much new data is accumulated
Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of logical ordering

Merge

• As data evolves, sequentially written runs of key-value pairs are merged
 ▶ Runs of data are indexed for efficient lookup
 ▶ Merges happen only after much new data is accumulated

Tree

• The hierarchy of key-value pair runs form a tree
 ▶ Searches start at the root, progress downwards
Log-Structured Merge Trees

Start with [O’Neil 96], then describe LevelDB

We will discuss:

- Compaction strategies
- Notable “tweaks” to the data structure
- Commonly cited drawbacks
- Potential applications
An LSM-tree comprises a hierarchy of trees of increasing size

- *All* data inserted into in-memory tree \((C_0)\)
- Larger on disk trees \((C_{i>0})\) hold data that does not fit into memory

Figure 2.1. Schematic picture of an LSM-tree of two components
When a tree exceeds its size limit, its data is **merged** and rewritten

- Higher level is always merged into next lower level (C_i merged with C_{i+1})
 - Merging always proceeds top down

Figure 3.1. An LSM-tree of K+1 components
Recall mergesort from data structures/algorithms

- We can efficiently merge two sorted structures in linear time using iterators

- When merging two levels, newer key-value pair versions replace older (GC)
 - LSM-tree invariant: newest version of any key-value pair is version nearest to top of LSM-tree

[O’Neil, Cheng, Gawlick ’96]

Figure 2.2. Conceptual picture of rolling merge steps, with result written back to disk
Maintain a set of key-value pairs (kv pairs)

- Support the following operations (at minimum):
 - \textbf{insert}(k, v) - insert a new kv pair, (possibly) replacing old value
 - \textbf{delete}(k) - remove all values associated with key \texttt{k}
 - \((k, v) = \textbf{query}(k)\) - return latest value \texttt{v} associated with key \texttt{k}
 - \{(k_1, v_1), (k_2, v_2), \ldots, (k_j, v_j)\} = \textbf{query}(k_i, k_l) - return all key-value pairs in the range from \texttt{k_i} to \texttt{k_l}

> \textbf{Question}: How do we implement each of these operations?
We insert the key-value pair into the in-memory level, C_0

- Don’t care about lower levels, as long as newest version is one closest to top
- But if an old version of kv-pair exists in the top level, we must replace it
- If inserting into C_0 causes C_0 to exceed its size limit, compact (merge)

> Inserts are fast! Only touch C_0 in common case.
We insert a **tombstone** into the in-memory level, C_0

- A tombstone is a “logical delete” of all key-value pairs with key k
 - When we merge a tombstone with a key-value pair, we delete the key-value pair
 - When we merge a tombstone with a tombstone, just keep one copy
 - When can we delete a tombstone?
 - At the lowest level
 - When merging a *newer* key-value pair with key k

> Deletes are fast! Only touch C_0.
Begin our search in the in-memory level, C_0

- Continue until:
 - We find a key-value pair with key k (return that value)
 - We find a tombstone with key k (return “not found”)
 - We reach the lowest level and fail-to-find (return “not found”)

> Searches traverse (worst case) every level in the LSM-tree
We must search every level, $C_0...C_n$

- Return all keys in range, taking care to:
 - Return newest (k_i, v_i) where $k_j < k_i < k_l$ such that there are no tombstones with key k_i that are newer than (k_i, v_i)
 - Common strategy is to create an iterator for each level and use merge-esque logic

Range queries must scan every level in the LSM-tree (although not all ranges in every level)
LevelDB

Google’s Open Source *LSM-tree-ish* KV-store
LevelDB consists of a hierarchy of **SSTables**
- An SSTable is a sorted set of key-value pairs (Sorted Strings Table)
 - Typical SSTable size is 2MiB

The **growth factor** describes how the size of each level scales
- Let F be the growth factor (fanout)
- Let M be the size of the first level (e.g., 10MiB)
- Then the ith level, C_i has size $F^i M$

The **spine** stores metadata about each level
- $\{\text{key}_{i,j}, \text{offset}_{i,j}\}$ for all SSTables in a level (plus other metadata TBD)
- Spine cached for fast searches of a given level
 - (if too big, a B-tree can be used to hold the spine for optimal searches)
LevelDB Example

1. Write operation to log (immediate persistence)
2. Update in-memory SSTable
3. (Eventually) promote full SSTable and initialize new empty SSTable
4. Merge/write in-memory SSTables to L₀

Memory

Disk

Operation Log

L₀: 8 MiB
L₁: 10 MiB
L₂: 100 MiB
L₆: 1 TiB

In-memory SSTable

(k₁,v₁)
How do we manage the levels of our LSM?

• **Ideal data management strategy would:**
 - Write all data sequentially for fast inserts
 - Keep all data sorted for fast searches
 - Minimize the number of levels we must search per query (low read amplification)
 - Minimize the number of times we write each key-value pair (low write amplification)

• **Good luck balancing so many competing interests in a single policy!**
 - … but let’s talk about some common approaches
Option 1: Size-tiered

- Each “tier” is a collection of SSTables with similar sizes.
- When we compact, we merge some number of SSTables with the same size to create an SSTable in the next tier.
Option 2: Level-tiered

• All SSTables are fixed size
• Each level is a collection SSTables with non-overlapping key ranges
• To compact, pick SSTable(s) from L_i and merge them with SSTable(s) in L_{i+1}
 ‣ Rewrite merged SSTables into L_{i+1} (redistributing key ranges if necessary)
 ‣ Possibly continue (cascading merge) of L_{i+1} to L_{i+2}
 ‣ Several ways to choose candidate SSTables for merge (e.g., round-robin or ChooseBest)
 ‣ Possibly add invariants to our LSM to control merging (e.g., an SSTable at L_{i+1} can cover at most X SSTables at L_{i+1})

(Note: This picture shows the aggregate size of individual levels, not the size of individual SSTables in a level.)
We write a lot of data during compaction

- Not all data is new
 - We may rewrite a key-value pair to the same level multiple times
- How might we save extra writes?
 - VT-trees [Shetty FAST '13]: if a long run of kv-pairs would be rewritten unchanged to the next level, instead write a pointer
- Problems with VT-trees?
 - Fragmentation
 - Scanning a level might mean jumping up and down the tree, following pointers

> There is a tension between locality and rewriting
We write a lot of data during compaction

• Not all data written during a compaction is new data at that level
 ▸ We may rewrite a key-value pair to the same level multiple times

• How might we save extra writes?
 ▸ Fragmented LSM-Tree [Raju SOSP '17]: each level can contain up to \(F \) fragments
 ▸ Fragments can be appended to a level without merging with SSTables in that level
 ▸ Saves the work of doing a “merge” until there is enough work to justify the I/Os

• Problems with fragments?
 ▸ Fragments can have overlapping key ranges, so may need to search through multiple fragments
 ▸ Need to be careful about returning newest values

> Again, we see a tension between locality and rewriting
We read a lot of data during searches

• We may need to search every level of our LSM-tree
 ‣ Caching the spine & binary search both help (SSTables are sorted), but still many I/Os in worst case

• How might we save extra reads?
 ‣ Bloom filters!
 ‣ By adding a Bloom filter, we only search if the data exists in that level (or false positive)
 ‣ Bloom filters for large data sets can fit into memory, so approximately \(1+e\) I/Os per query

• Problems with Bloom filters?
 ‣ Do they help with range queries?
 ‣ Not really…

LSM-tree Problems?
Thought Questions

How might you design:

• an LSM-tree for an SSD?
• an LSM-tree for a HDD?
 ▸ how would your designs be different?
 ▸ Different concerns (e.g., wear leveling & endurance, parallelism, gap between sequential and random I/O)

Should we store the data inside the index, or separating the data from the index (clustered vs. declustered index)

• How might you design a system that separates keys from values?
 ▸ Wisckey [Lu FAST 16]: Store keys in LSM-tree, values in a log
• What are the advantages/disadvantages?
 ▸ Can fit most of the LSM-tree (keys) in memory -> 1 I/O per search
 ▸ Need to GC your value log, just like LFS
Final Thoughts

LSM-trees are a write-optimized data structure:
 • Many updates are batched and committed in a sequential I/O

Although we may need to search for data in multiple levels, we can avoid unnecessary I/Os with additional metadata
 • Boom filters help avoid unnecessary searches in a given level
 • Metadata in “spine” helps to target searches within a level

I/O amplification is one of the biggest challenges for LSM-trees
 • Leveled-design causes read amplification
 ▸ Searches may require I/Os at each level in worst case
 • Compaction causes write amplification
 ▸ Different compaction strategies favor write vs. read performance