B^ε-trees

CSCI 333
Williams College
This Video

• B\(\varepsilon\)-trees
 ‣ Operations
 ‣ Performance

• Choosing Parameters

• Compare to B-trees and LSM-trees
Big Picture: Write-Optimized Dictionaries

- New class of data structures developed in the ’90s
 - B^ε-trees [Brodal & Fagerberg ’03]
 - COLAs [Bender, Farach-Colton, Fineman, Fogel, Kuzmaul & Nelson ’07]
 - xDicts [Brodal, Demaine, Fineman, Iacono, Langerman & Munro ’10]

- WOD queries are asymptotically as fast as a B-tree (at least they can be in “good” WODs)

- WOD inserts/updates/deletes are orders-of-magnitude faster than a B-tree
Bϵ-trees [Brodal & Fagerberg '03]

- Bϵ-trees: an *asymptotically optimal* key-value store
 - Fast in best cases, bounds on worst-cases

- Bϵ-tree searches are just as fast as* B-trees

- Bϵ-tree updates are *orders-of-magnitude* faster*

*asymptotically, in the DAM model
B and ε are parameters:
- B \to how much “stuff” fits in one node
- ε \to fanout \to how tall the tree is

\[O(\frac{N}{B}) \text{ leaves} \]
\[O(\log_{B^\varepsilon} N) \]
Bε-trees [Brodal & Fagerberg '03]

- Bε-tree leaf nodes store key-value pairs
- Internal Bε-tree node buffers store messages
 - Messages target a specific key
 - Messages encode a mutation
- Messages are flushed downwards, and eventually applied to key-value pairs in the leaves

High-level: messages + LSM/B-tree hybrid
B\(\varepsilon\)-tree Operations

• Implement a dictionary on key-value pairs
 ▪ \text{insert}(k,v)
 ▪ \(v = \text{search}(k)\)
 ▪ \((k_i,v_i), \ldots, (k_j, v_j)\} = \text{search}(k_1, k_2)
 ▪ \text{delete}(k)

• New operation:
 ▪ \text{upsert}(k, f, \Delta)

Talk about soon!
Bε-tree Inserts

All data is inserted to the root node’s buffer.
When a buffer fills, contents are flushed to children.
Bε-tree Inserts
B^{\varepsilon}-tree Inserts
Bε-tree Inserts

Flushes can cascade if not enough room in child nodes
B⁻tree Inserts

Invariant: height in the tree preserves update order

Flushes can cascade if not enough room in child nodes
B^ε-tree Searches

- Read and search all nodes on root-to-leaf path
- Newest insert is closest to the root.
- Search all node buffers for messages applicable to target key
Updates

• In most systems, updating a value requires: read, modify, write

• **Problem:** B$^\varepsilon$-tree inserts are faster than searches
 ‣ fast updates are impossible if we must search first

\[
\text{upsert} = \text{update} + \text{insert}
\]
Upsert messages

• Each upsert message contains a:
 • Target key, \(k \)
 • Callback function, \(f \)
 • Set of function arguments, \(\Delta \)

• Upserts are added into the \(\mathcal{B}^\varepsilon \)-tree like any other message

• The callback is evaluated whenever the message is applied
 ‣ Upserts can specify a modification and lazily do the work
 ‣ e.g., increment a counter, replace a string, update a byte range
Bε-tree Upserts

\[\text{upsert}(k, f, \Delta) \]
B\(\varepsilon\)-tree Upserts

Upserts are stored in the tree like any other operation.
B$^\varepsilon$-tree Upserts
Bε-tree Upserts
Searching with Upserts

Upserts don’t harm searches, but they let us perform **blind updates**.
Thought Question

• What types of operations might naturally be encoded as upserts?
Performance Model

• Disk Access Machine (DAM) Model [Aggarwal & Vitter '88]

• Idea: expensive part of an algorithm’s execution is transferring data to/from memory

• Parameters:
 - \(B \): block size
 - \(M \): memory size
 - \(N \): data size

Performance = (# of I/Os)
Point Query: ?

Range Query:

Insert/upsert:

\[O(\log_{B^\varepsilon} N) \]
Goal: Compare query performance to a B-tree \(O(\log_{B^\varepsilon} N) \)

- **B^\varepsilon**-tree fanout: \(B^\varepsilon \)
- **B^\varepsilon**-tree height: \(O(\log_{B^\varepsilon} N) \)

Rule 1: \(\log_b (M \cdot N) = \log_b M + \log_b N \)

Rule 2: \(\log_b \left(\frac{M}{N} \right) = \log_b M - \log_b N \)

Rule 3: \(\log_b (M^k) = k \cdot \log_b M \)

Rule 4: \(\log_b (1) = 0 \)

Rule 5: \(\log_b (b) = 1 \)

Rule 6: \(\log_b (b^k) = k \)

Rule 7: \(b^{\log_b (k)} = k \)

Where: b > 1, and M, N and k can be any real numbers

but M and N must be positive!

Point Query: $O\left(\frac{\log_B N}{\varepsilon}\right)$

Range Query: ?

Insert/upsert:
Point Query: $O\left(\frac{\log_B N}{\varepsilon}\right)$

Range Query: $O\left(\frac{\log_B N}{\varepsilon} + \frac{\ell}{B}\right)$

Insert/upsert: ?
Point Query: \(O\left(\frac{\log_B N}{\varepsilon} \right) \)

Range Query: \(O\left(\frac{\log_B N}{\varepsilon} \right) + \frac{\ell}{B} \)

Insert/upsert: ?
Goal: Attribute the cost of flushing across all messages that benefit from the work.

➡ How many times is an insert flushed? $O(\log_{B^\epsilon} N)$

➡ How many messages are moved per flush? $O\left(\frac{B - B^\epsilon}{B^\epsilon}\right)$

➡ How do we “share the work” among the messages?
 • Divide by the total cost by the number of messages
Batch size *divides* the insert cost... Inserts are *very* fast!

Each insert message is flushed $O(\log B^\varepsilon N)$ times.

Each flush operation moves $O\left(\frac{B - B^\varepsilon}{B^\varepsilon}\right)$ items.

Point Query: $O\left(\frac{\log B}{\varepsilon} N\right)$

Range Query: $O\left(\frac{\log B}{\varepsilon} N + \frac{\ell}{B}\right)$

Insert/upsert: $O\left(\frac{\log B}{\varepsilon B^{1-\varepsilon}} N\right)$
Recap/Big Picture

• Disk seeks are slow \Rightarrow big I/Os improve performance

• B^ε-trees convert small updates to large I/Os
 • Inserts: orders-of-magnitude faster
 • Upserts: let us update data without reading
 • Point queries: as fast as standard tree indexes
 • Range queries: near-disk bandwidth (w/ large B)

Question: How do we choose B and ε?
Thought Questions

• How do we choose ε?

• Original paper didn’t actually use the term B^ε-tree (or spend very long on the idea). Showed there are various points on the trade-off curve between B-trees and Buffered Repository trees

$\varepsilon = 1$ corresponds to a B-tree
$\varepsilon = 0$ corresponds to a Buffered Repository tree
Thought Questions

• How do we choose B?

• Let’s first think about B-trees
 • What changes when B is large?
 • What changes when B is small?

• B^ϵ-trees buffer data; batch size *divides* the insert cost
 • What changes when B is large?
 • What changes when B is small?

In practice choose B and “fanout”. $B \approx 2-8\text{MiB}$, fanout ≈ 16
Thought Questions

• How does a B^ε-tree compare to an LSM-tree?
 ‣ Compaction vs. flushing
 ‣ Queries (range and point)
 ‣ Upserts
Thought Questions

• How would you implement
 ‣ `copy(old, new)`
 ‣ `delete(“large”)` :: kv-pair that occupies a whole leaf?
 ‣ `delete(“a*lb*lc*”)` :: a contiguous range of kv-pairs?
Looking Ahead

- From B^ε-tree to file system!