
Deduplication is a form of compression.

At a high level, deduplication systems:

1. identify duplicate objects and
2. eliminate redundant copies of information

How the system defines and "object" and how the system defines a "redundant copy" is system specific.

Deduplication systems can be defined along several axes.

In on-line dedup systems, the deduplication process happens at the time that data is written. A typical online
deduplication system works as follows:

1. When the system receives a request to write some new object O (and before O's data is actually
written), the system checks to see if a duplicate copy of O already exists.

If the object is found to be unique, then the object is written as normal.
If a duplicate object is already in the system, the new object O is not written; instead, a reference to
the original copy is stored.

In off-line dedup systems, the deduplication process happens after data is already persisted. A typical offline
deduplication system will have a background process that scans data, and replaces duplicate objects with
references to a common copy. This ultimately saves space because redundant copies are replaced with a
reference, but there is a (potentially long) time window between when a copy is written and when the copy is
replaced.

Fingerprints are unique content identifiers.

Scanning a storage system and doing pairwise byte-by-byte comparisons of all objects is impractical.
Instead a cryptographic hash is used as a unique ID for an object's contents. Then, to compare objects
(regardless of their size), you only need to compare their hashes (fingerprints): if the hashes are the same,
then the objects have the same contents.

For this to work, the probability of a hash collision must be close-to-zero. In other words, if two objects
differ by even one byte, then their hashes should be completely unrelated. In a deduplication system, a
hash collision introduces a correctness error.
We often choose hash functions and hash sizes (i.e., the number of bits in the fingerprint) such that the
probability of a hash collision is less likely than the probability of a hardware error. Since we assume that

Deduplication

On-line vs. offline

Fingerprinting



the bits in a crytpographically strong hash function are uniformly random, each additional bit that is
added to a hash will double the number of unique values that the hash function can represent.
The "birthday paradox" is often used to analyze the collision probability and justify a particular hash
size.

Chunking is the process of breaking data into objects. Chunks can be whole-file objects, fixed-size chunks,
or variable-sized chunks.

Whole-file deduplication is simple and often has low overheads. If two files are exact copies, only one
version is written. Subsequent files with matching contents are added to the system as references to the
original.

The amount of metadata required to keep track of all objects in the system is quite low; it scales
with the number of files.
Any modification to a file requires a unique copy to be made (breaking all sharing with similar files),
which means that whole-file deduplication systems often have lower compression ratios than
systems that use finer-granularity chunking schemes.

Fixed-size chunks are often chosen to be sizes that are multiples of system hardware parameters, like
memory pages or disk sectors.

The process of breaking an object into chunks is easy, since no computation needs to be
performed.
If a single chunk is modified, common chunks can still be shared with other objects' chunks
If data shifts (for example, after the insertion of a byte at the head of a file), then all subsequent
chunks will shift. Thus, local changes can falsely cause duplicates to be treated as unique
Since there are at least as many chunks as there are files, the amount of metadata required to keep
track of all objects in the system scales with the amount of data (not number of files).

Variable sized chunks are often defined by the contents of the objects using Rabin fingerprints or some
other sliding window method.

If a single chunk is modified, common chunks can still be shared
If data shifts, then it is unlikely that nearby chunk boundaries are affected, since the boundaries are
determined by the contents

Using large chunks creates lower metadata overheads (fewer chunks, so the fingerprint index is
smaller), but large chunks usually result in lower deduplication ratios (coarser granularity of sharing).
Using small chunks creates higher metadata overheads (more chunks, so the fingerprint index is larger),
but small chunks usually have higher deduplication ratios (objects can share data at finer granularities).

The chunk index can be a bottleneck in large deduplication systems, since it likely will not fit into RAM.
Hashes are randomly distributed, so fingerprint index lookups often have no locality within the indexing data

Chunking

Chunk Size

Indexing



structure, even if the workload has high locality.

Bloom filters can be used to detect whether a fingerprint exists, eliminating the need for some
unnecessary lookups.
Some systems group fingerprints into groups on disk. If groups are defined by temporal locality, then
caching and evicting based groups may improve cache efficiency

Question: how would you define the appropriate "group" for a very common chunk (e.g., the chunk
is common to many unrelated files, each with their own fingerprint group)


