
Deduplication: Concepts and Techniques

William Jannen
jannen@cs.williams.edu

April 19, 2020

1 Introduction

This document surveys the deduplication design space.
For each design element, the document presents the high-
level idea and uses representative systems as case studies.
If there are parts of the text that are unclear, please let me
know so that I can improve them. I am not aware of any
good surveys/introductory texts on deduplication, so this
is my attempt to create one for us to use in this class.

Learning objectives:
Definition. At a high level, what are the core processes

that deduplication systems perform?
Measurement. How do you quantify the effectiveness of

a deduplication system so that we can compare it
against other designs?

Timing. When do you perform deduplcation? What is
the difference between an inline and an offline dedu-
plication system? How do they trade performance
and space consumption?

Data structures. What is a chunk? What is a fingerpint?
What is the fingerprint index, and how is the finger-
print index used?

Parameters. What knobs can a system design tune, and
how do they affect performance, deduplication ratio,
metadata overhead, fragmentation, etc.?

Use cases. In what environments should deduplication
techniques be employed? What characteristics of an
environment present promising opportunities or dif-
ficult challenges for a deduplication system to man-
age?

2 Deduplication

Data deduplication is a form of compression. The name it-
self, deduplication, hints at a deduplication system’s over-
arching goal: to identify duplicate data, and eliminate
repeated instances of that data. Successfully identifying
and eliminating redundant data can drastically decrease
the storage requirements for systems that deal with large
volumes of data. This is especially true for systems which
maintain multiple copies of identical files—such as a sys-

tem that performs nightly backups—or for systems that
store many files with large, overlapping regions—such as
boilerplate or configuration files that are part of an OS
distribution. Even when storage capacity is not an issue,
there are other reasons that deduplication may be valu-
able; for example, when sending data from a client to a
server, a client that knows that the server already has a
copy of the data it wishes to send can avoid transfering
unnecessary data and avoid network overheads.

Completely eliminating all duplicate data is an ad-
mirable goal, but a system design may tolerate some
replication for a variety of reasons. For example, allow-
ing some redundant data may be necessary in order to
complete important tasks in a reasonable amount of time
(identifying all duplicates may be expensive!), or tolerate
system failures (if we lose the only copy of a file system
superblock, our whole system is hosed). Thus, we would
like some measure that describes a deduplication system’s
effective “data savings”. For that, we turn to the dedupli-
cation ratio.

Concretely, if B bytes of data are presented to a storage
system S, which unambiguously represents the data using
D bytes, then the deduplication ratio of S is defined to be:

DS =
B
D

(1)

A more efficient deduplication system will have a
higher deduplication ratio (i.e., it stores more data using
fewer bytes). However, DS is not the only measure of
interest. Latency, throughput, scalability, and resiliency
are all system design concerns, and the right balance of
performance and deduplication efficiency is going to be
context dependent.

2.1 Deduplication in a nutshell

Deduplication system designs differ along many dimen-
sions, but at a high level, they all follow the same ba-
sic formula. The system receives a stream of data, and
it breaks that stream into discrete parts called chunks.
For each chunk, the system calculates a collision-resistant
hash (e.g., SHA-1, MD5). This hash value is commonly

1

referred to as the chunk’s fingerprint because the finger-
print uniquely identifies the chunk’s contents: two chunks
that differ by even a single byte should have unrelated fin-
gerprints. The set of unique chunk hashes (fingerprints)
and the locations of the data that those fingerprints de-
scribe (chunk pointers), are stored in the system’s finger-
print index.

After chunking, fingerprinting, and indexing, the dedu-
plication process becomes straightforward: when the sys-
tem receives a 〈fingerprint, chunk pointer〉 pair,
the system stores the chunk on disk if the fingerprint is
absent from the index, and inserts the fingerprint into the
index for future data sharing. Otherwise, the system stores
a logical pointer to the original chunk, and discards the re-
dundant chunk data.

Restoring deduplicated data is also straightforward: to
reassemble the orignal data stream, the stream’s logical
chunks must be located and combined by looking up the
chunk fingerprints in the fingerprint index.

2.2 Design Choices
There are three primary design decisions within the basic
deduplication framework:
• when to perform deduplication,
• where to perform deduplication, and
• what to deduplicate
The first choice in the design of any deduplication sys-

tem is when to perform deduplication. The two classes of
deduplication systems are inline and post-process dedu-
plication [12].

Inline. In an inline deduplication system, the data
stream is chunked and hashed before it is written to disk
[10]. The main advantage of the inline approach is that
duplicate chunks are never written, saving I/O. However,
inline deduplication introduces chunking, hashing, and in-
dex queries—expensive computations—onto the critical
path of each potential write. As a result, inline deduplica-
tion systems generally suffer increased latency.

Offline. Post-process (or offline) deduplication elimi-
nates data redundancy after the data has been completely
committed to disk. This deferred processing keeps file
system responsiveness high, since duplicate elimination
is done as a background process—possibly on a remote
system. Unfortunately, duplicate data consumes tempo-
rary space during the period of time between the initial
write and the duplicate detection/elimination.

A second choice for deduplication systems is what to
deduplicate. Deduplication can be performed at the gran-
ularity of entire files [4], fixed-size blocks [20, 28], or
variable-sized chunks [5, 18]. Hybrid schemes are also

possible, where the chunking strategy is flexible. Hy-
brid schemes often leverage additional information, such
as file type, to form heuristics and make decisions on a
case-by-case basis about which chunking scheme is most
appropriate [17].

Whole file. Whole file deduplication eliminates the run-
time “chunking” overheads. (More details about chunking
are discussed later.) The downside of this coarse file-level
granularity is that there are fewer sharing opportunities.
For example, consider two large files which are identical
up to the last byte; at file granularity, no data is shared
whatsoever. File granularity is inappropriate for dedupli-
cating boilerplate code, configuration files, and iterative
file modifications, as no amount of data will be shared de-
spite large regions of commonality.

Yet in some domains whole file granularity is prefer-
able. Compressed files and media files exhibit the prop-
erty that even small modifications to the underlying data
completely transform the final representation. As a con-
sequence, either the whole file is identical or none of it
is [17].

Variable-sized chunking. Variable sized chunking lies
at the other extreme: data is divided into potentially many,
potentially small chunks in an attempt to maximize the
sharing opportunities. The locations of chunk boundaries
are determined by a computation over the data itself, im-
parting the name content defined chunking.

Content defined chunking often yields the highest
deduplication ratios. There are many small segments, so
there are many opportunities to share data among the log-
ical objects in the system. Content defined chunking also
gracefully handles the case that data is inserted into a
stream; only the new data’s containing segment and po-
tentially its successor must be re-chunked and re-hashed
in the common case [18]. This is discussed later in the
LBFS case study.

Despite the higher deduplication ratios, content defined
chunking introduces several costs into the end-to-end task
of deduplication. First, it takes time to identify chunk
boundaries. Rabin fingerprints [21], as used in the two-
thresholds two divisors [9] and INC-K [17] chunking al-
gorithms, are computed over a sliding window, so the
process incurs many computations even at small average
chunk sizes.

The additional costs of storing and querying the finger-
print index are perhaps more subtle. The more chunks
there are in the index, the larger the indexing data struc-
ture becomes; it is not long until the index exceeds the size
of main memory and must spill onto disk. Index queries
have almost no locality of reference, which compounds
the problem; a collision resistant hash is necessarily in-
dependently and uniformly distributed, so data that has

2

locality in the workload does not have locality in the in-
dex. As index sizes grow, each look-up requires one or
more disk seeks, introducing the chunk index disk bottle-
neck [29].

Fixed-size chunking. Fixed block sizes present a com-
promise between file level granularity and variable sized
chunking. Chunk boundaries are set at predetermined off-
sets in the stream instead of at boundaries determined by
some computation over the data (often fixed-size chunks
are set at 4KiB to match common page/block sizes).
Fixed offsets provide fast, computation-free chunking and
achieve a finer granularity than the entire file. System
rules governing disk layout are much simpler, and an ap-
propriate block size manage internal fragmentation and
index size. Unfortunately, data insertion is difficult to
handle—the remainder of a file must be rehashed, creating
many unreachable blocks as data evolves quickly. Again,
data insertion is discussed later, and we will see why vari-
able sized chunking performs well in this scenario.

A third design decision is where to perform deduplica-
tion. Source deduplication describes systems where an
index is maintained or queried locally, and data is exam-
ined for duplicates before being sent to a remote server
for storage. Data transfer is minimized because duplicate
data is never transmitted across a network in source dedu-
plication. Destination deduplication systems remove the
deduplication process from the client; all deduplication
is done remotely. Destination deduplication minimizes
client computation at the cost of network bandwidth. In
some systems [27], a lightweight index is used to check
for existence at the source, but location data is main-
tained at the destination. The choice of source or destina-
tion deduplication determines where resource consump-
tion will take place. Location may also be determined by
system constraints; general purpose workstations may not
be well-equipped to meet deduplication requirements.

For the remainder of this section, we discuss some tar-
get workloads and the properties of those workloads that
lend themselves to different design decisions. The top of
Table 1 provides a classification of the systems discussed
in this section. Systems below the double line were omit-
ted for brevity.

2.3 Archival

Perhaps the largest demand for data deduplication arises
from enterprise backups. Companies are required to
maintain diligent and comprehensive records of old data,
for many years after its inception, in order to comply with
government regulations. The characteristics of such data
backups depart from single user workstation use in several
ways:

• a backup operation is a large streaming write, with
no random accesses or reads

• a backup must complete in its entirety in a given win-
dow

• once written, the data will never change (it is im-
mutable)

• data may be read in the future, but rarely (cold stor-
age)

• data must always be accessible in its original form
• the aggregate volume of data will only ever grow —

capacity should be incrementally scalable
These fixed-content workloads often prioritize dedu-

plication ratio, favor throughput over latency, require re-
silience to data loss, and must scale extraordinarily well.

2.3.1 Case Study: Venti

Venti [20] is an early implementation of a content ad-
dressable archival repository, sharable amongst multiple
clients. Venti implements a write once policy — once
written, data cannot be modified or deleted by a user or
administrator. The decision to archive data is permanent.

Venti writes data to an append-only log, divided into
fixed-size, logical containers termed arenas. Data blocks
may be variable sized, but the append only nature of are-
nas prevents fragmentation. Each data block is stored with
an associated header. The header lists, among other infor-
mation, whether or not the data was compressed and with
what algorithm. A list of the headers for all data the arena
contains is replicated at the end of each arena. When an
arena is filled, it is sealed — never to be modified again.

An on-disk hash table is maintained separately from the
log. Hash buckets, which are used to resolve collisions,
occupy an entire disk block, with any excess fingerprints
written to subsequent blocks. Thus, every index query
requires at least one disk seek, but often only one such
seek.

Separating the index from the block store allows Venti
to maintain disparate storage policies. The block store is
kept on a RAID, providing fault tolerance through parity.

Venti is not a full backup solution — it is merely a
back-end block store over which a complete system may
be constructed. Mappings from files to their constituent
blocks must be maintained externally. We observe this
pattern in many CAS systems. A storage backend is op-
timized for expected access patterns, and overlaid with
client file system structures.

2.3.2 Case Study: Deep Store

Deep store is an archival storage system for fixed-content
(immutable) reference data (write once, read many) [28].
Deep Store’s goals are similar to those of Venti, but Deep

3

System Deduplication
Location

Chunking Index Keywords

Venti [20] destination N/A (variable) on-disk hash ta-
ble

write-once policy, append-
only arena, data compres-
sion

Deep Store
[28]

destination variable local hash struc-
ture, distributed
hash table

rich metadata, delta encod-
ing, compression

Hydrastor
[7]

destination variable (Rabin) distributed hash
table

resiliency classes, erasure
codes, continuous operation

LBFS [18] hybrid variable (Rabin) legacy DB content defined chunking,
modified NFS, resource
trade-off

Data Do-
main [29]

destination variable (Rabin) tiered: Bloom
filter, locality
preserving cache,
legacy DB

locality-preserving cache,
stream informed segment
layout, disk bottleneck

Sparse In-
dexing [14]

destination (hy-
brid)

variable (two
thresholds, two
divisors)

in-memory, sam-
pled

sampling, sparse index,
chunk locality

PRUNE
[17]

destination variable (INC-K) partitioned index
(tablets)

INC-K, tablet, partitioned
index

HydraFS
[24]

destination variable (Rabin) distributed hash
table

familiar file system API over
Hydrastor backend

SIS (Win-
dows
2000) [4]

source N/A (whole-file) database file links with copy seman-
tics, copy-on-close

Table 1: A categorization of example deduplication file systems.

4

Store makes two observations. First, data will be stored
over an indefinite time horizon; data must therefore be
searchable and comprehensible beyond the lifetimes of
those who generated it. Second, the effectiveness of com-
pression is dependent upon the composition of the data;
the system should be able to select the compression tech-
nique that is best for the data at hand. Deep Store stores
versioned XML metadata, and supports chunk-and-hash
CAS as well as delta compression to accommodate these
requirements.

The Deep Store index is called the virtual object table,
a hash structure storing location information as a {16-
bit group number, 16-bit megablock number, and 32-bit
offset}. To locate a file, a distributed hash table maps
the group number to a storage node, where the megablock
number and offset address the virtual block on disk. It is
called a virtual block because it can be one of three types:
K block contains actual block data
Σ block contains a list of handles that, when themselves

resolved, are concatenated to form the final file
∆ block contains the handle list of one or more reference

files filed by a delta file
Files longer than a megablock (4GB) are split amongst
multiple megablocks and stored as Σ blocks (concatena-
tions).

Deep Store metadata is intended to be rich: both search-
able and versioned. However, such rich metadata conflicts
with Deep Store’s emphasis on compression. The Deep
Store solution is to store metadata in a representation ap-
propriate for its use. Metadata is maintained as versioned
XML, but storage is as follows:
system metadata is needed on all file operations and is
stored in an efficient lookup structure

search metadata is kept in an XML database
archival metadata is stored alongside regular data — it

is both indexed and losslessly compressed
Deep Store is the prototype of a complete backup so-

lution, but it leaves several questions open further explo-
ration. One question is how to make a system resilient to
data loss. The authors identify the ideological contradic-
tion of adding redundancy to a system designed to elimi-
nate redundancy. Yet if a CAS block shared by many files
is lost, or the base file of a chain of delta versions is cor-
rupted, entire subtrees of files dependent on that data are
ruined. Deep Store does not solve this problem, but the
authors conclude that the degree of replication should be
proportional to the number of files dependent on a data
instance.

Deep Store also notes that content analysis is both CPU
and I/O intensive, but not necessarily at the same time.
Deep Store leaves an analysis of these trade-offs, data
structure optimization, and pipelining as future work.

It is also worth discussing what the authors termed the

CPU-I/O gap. The historical growth rates in the perfor-
mance of silicon based components (processors/memory)
have always outstripped the performance gains in capac-
ity and latency of magnetic media (disks). An implication
of this gap is that any system designed to leverage compu-
tations that consume memory and CPU resources in order
to reduce traffic to and from disk, will get progressively
faster, assuming technology trends continue. Archival
systems are designed to operate in the very long run, so
this trade-off seems important.

2.3.3 Case Study: Hydrastor

Hydrastor is another archival system which utilizes CAS
for data deduplication [7]. Hydrastor’s primary deploy-
ment target is the data center. As such, Hydrastor’s goals
are continuous operation — in the face of hardware fail-
ures as well as upgrades; reliability; integrity; availability;
and configurability. We focus on Hydrastor’s methods for
providing of reliability in this subsection.

Hydrastor provides the abstraction of an infinite store
of content-addressed, immutable, variable-sized blocks.
Each block is stored at a user-defined resiliency level,
which determines the number of concurrent node failures
the block can survive. Resiliency is provided at the block
level via erasure codes [6].

Erasure codes break a chunk of data into a set of frag-
ments in such a way that the original chunk can be re-
constructed from any appropriately sized subset of those
fragments. Formally, a message of m symbols is trans-
formed into a code word of n > m symbols. The message
can be recovered from any set of m′ ≤ n symbols, as long
as m′ ≥ k. In Hydrastor, n is set to the supernode cardinal-
ity. The resiliency level dictates the choice of k.

Heterogeneous resiliency levels introduce an additional
requirement for block writes. An incoming block deter-
mined to be a duplicate can only be discarded if the pre-
viously existing copy of that block has an equivalent or
higher resiliency level. The system must also handle the
case where blocks are in the process of being recovered
after failure or migration to a new peer node. Hydrastor
manages this case by storing the additional block when-
ever Hydrastor cannot conclusively determine the status
of previous block copies.

When a failure occurs, the resiliency levels of all still-
readable blocks are automatically scheduled for rebuild-
ing. This requires block reassembly, recoding, and rewrit-
ing of fragments to an entirely new syncrun.

An evolution of this project is HydraFS, which builds a
familiar file system API over a Hydrastor back-end [24].

5

2.4 Minimizing data transfer
Persistent storage is not always the most constrained sys-
tem resource. This subsection studies the application of
CAS and deduplication techniques to data written onto the
network, as opposed to a rotating disk. The following sys-
tems trade CPU and memory for bandwidth savings.

2.4.1 Case Study: LBFS

The low bandwidth file system (LBFS) [18] guarantees
close-to-open consistency. LBFS also minimizes network
transmission at all costs, within the consistency model.
LBFS prioritizes deduplication ratio and relies heavily on
client-side caching in order to achieve these goals.

LBFS introduces variable-sized chunking to maximize
its deduplication ratio. The sliding window method
(SW), also shown in Algorithm 1, has two parameters:
window size w, and target pattern size t. SW computes a
fingerprint over all overlapping w-width byte ranges until
observing that the t low-order bits of the fingerprint are
equal to 0. SW defines a break point at the last byte in w.
SW then shifts the window right by w bytes, and repeats
the process until reaching the end of the file.

Algorithm 1 - Sliding window method
1: param NUMERIC w, t
2: param FILE f
3: INT i← 0
4: while (i+w)≤ | f | do
5: t← FINGERPRINT(f [i, . . . , i+w])
6: if t = 0 then
7: define chunk boundary at f [i+w]
8: i← i+w
9: else

10: i← i+1
11: end if
12: end while

A negative binomial distribution allowing r failures has
a mean of (pr)/(1− p), so the sliding window method
yields an expected chunk size of 2t−1+w. LBFS selects
t = 13,w = 48, for an expected chunk size of≈ 8K. Thus,
the calculation of a single chunk boundary requires ≈ 8K
individual fingerprint calculations.

Fortunately, Rabin fingerprints [21] are a reasonably ef-
ficient choice for chunking calculations because their cal-
culation is incremental. Large parts of a Rabin fingerprint
computation for one window can be reused in the compu-
tation for the next overlapping window. Note, however,
that Rabin fingerprinting is used to identify chunk bound-
aries, not to uniquely identify block contents. CAS re-
quires that each chunk be separately fingerprinted with a
cryptographically strong hash, such as SHA-1, in order to
prevent collisions.

Variable sized chunking presents an elegant solution
to the problem of data insertion. Recall that fixed-size
chunks are defined by byte offsets within a file. A file f ′,
produced by adding a single byte at the front of the file f ,
will have no fixed-size blocks in common with f . This is
called the boundary-shifting problem. The entire file must
be retransmitted over the network, despite the fact that it
exists in its entirety at the server. Variable sized chunking
requires that as little as one block be sent.

After an insertion, the sliding window method can ter-
minate as soon as a previously chunked block is identi-
fied. Consider the three cases shown in Figure 1 where
(1) data is inserted into the middle of a chunk, (2) data
is inserted that includes or produces a new chunk bound-
ary, and (3) data is inserted into a window that contains a
chunk boundary. In (1), only the single block containing
the new data must be re-chunked. In both (2) and (3), the
containing block up to any new boundary is fingerprinted,
followed by the successor, until an existing chunk bound-
ary is encountered. LBFS only transmits the new chunks
across the network.

Figure 1: Three cases of a small data insertion into an ex-
isting file with variable sized chunks. Windows that rep-
resent chunk boundaries are shown in grey. In the first
case, the insertion does not introduce any new chunks. A
new fingerprint must be taken for the containing chunk,
but no boundaries shift. In the second case, the insertion
causes an existing chunk to be divided into two. The final
example eliminates an existing chunk boundary, causing
two previously existing chunks to be merged. LBFS only
transmits new chunks across the network, reducing band-
width.

Two drawbacks to variable sized chunking are an in-
creased computational burden and a vulnerability to cer-
tain inputs. To one extreme, some inputs contain a chunk
boundary every w bytes. It would be less expensive to
transmit raw data than to transmit messages that iden-

6

tify duplicate blocks. On the other extreme, some data
streams produce no internal chunk boundaries. Notably,
a sequence of 0’s has this property. LBFS defines a min-
imum chunk size of 2K and a maximum of 64K to han-
dle these degenerate cases. The sliding window algorithm
starts at an offset of 2K instead of 0, and after 64K, an
artificial boundary is inserted.

Variable sized chunking refines the granularity of dupli-
cate detection, and client-side caching and RPC pipelining
further reduce the latency and bandwidth consumption of
LBFS. In what follows, we describe the LBFS protocol
and consistency model, highlighting the use of duplicate
detection to minimize data transfer.

The LBFS protocol is a modified NFSv3, with exten-
sions to leverage commonalities amongst files and reduce
network traffic. Specifically, LBFS adds read leases and
the following RPC calls:
GETHASH(nfs handle, offset, len) :
returns the hash of each file chunk in the range as a list
of {〈SHA-11,size1〉,〈SHA-12,size2〉, . . .} pairs.

MKTMPFILE(nfs handle, fd) :
creates a temporary server file to be used for atomic up-
dates. The serer maintains a mapping from the 〈user,
fd, errlist〉 triple to the nfs handle. errlist
tracks all errors during user’s operations on the tem-
porary file, fd.

COMMITTMP(nfs handle, fd) :
copies the contents of the temporary file associated with
fd to the file identified by nfs handle if no errors are
associated with fd.

CONDWRITE(fd, offset, len, SHA-1) :
if the server has data associated with SHA-1 in its index,
the server writes that data to the temporary file identified
by fd. Otherwise, it replies with HASHNOTFOUND.

TMPWRITE(fd, offset, len, data) :
the server writes data to the temporary file identified by
fd.
LBFS assumes that clients persistently cache their en-

tire working set. File operations on valid cache entries can
be satisfied locally, and cache validation is only necessary
in the case of an expired lease.

LBFS maintains a local chunk database to index all
chunks in the local cache. The chunk index is keyed
by just the first 64 bits of a chunk’s SHA-1, mapping to
〈file, offset, count〉 triples.

LBFS does not rely on its index for correctness, which
has several implications. Collisions are possible with a re-
duced 64-bit key-space, so all SHA-1 fingerprints must be
recomputed before reconstructing a file. Since the index
tracks only local files, the index must be updated upon file
writes. However, the index does not need to be updated
synchronously, since errors in the index are detected by
rehashing. An error in the index just results in wasted

work.
A file read is initiated by the client with a GETHASH

call. The server chunks the requested file, and responds
with a list of the chunks’ SHA-1 hashes. The client only
issues READ calls for data chunks that are not present in
its local cache.

File data is only written to the server when a process
that modified the file has closed the file. The client begins
a write with a MKTMPFILE, to which the client provides
a unique fd. The client chunks the file and pipelines a
CONDWRITE for each chunk. If the server already has
the chunk, it acknowledges, otherwise it replies with a
HASHNOTFOUND message. The client sends a TMP-
WRITE for each chunk of new data, and finishes the write
with a COMMITTMP. Since COMMITTMP completes a
write atomically, it can be pipelined with outstanding TM-
PWRITE calls. The atomic commit also ensures close-
to-open consistency; if multiple clients write in parallel,
the last to successfully complete a COMMITTMP will suc-
ceed. An example of the network traffic exchanged during
read and write operations is shown in Figure 2.

LBFS does not technically provide content addressable
storage. Files are stored by opaque NFS handles, and
LBFS runs over any legacy file system with an NFS server
implementation. Despite this, LBFS occupies a relatively
unique position in the overall CAS design space and is
very influential for future CAS systems.

Very few CAS systems are designed for interactive use:
archival systems are typically limited to secondary stor-
age solutions, and Tangler [25] to document publishing.
The reason is simple: interactive systems require respon-
siveness. Latency can be intolerable when every write
triggers data chunking, chunk hashing, and index inser-
tions, or when every small read triggers a multiple-disk-
seek index lookup operation. LBFS identifies an applica-
tion — running a network file system over an unreliable,
low-bandwidth, wide area network — where latency can
improve using CAS techniques. In this context, network
delay >> disk delay >> CPU delay. LBFS uses CAS
techniques to lower the burden placed on an expensive re-
source at the expense of placing an increased burden on
less expensive resources.

LBFS defers work until a time when the cost of that
work may go unnoticed. The overheads of chunking,
hashing, and indexing are pushed to file open and file
close, where network delays dominate the total overhead.

2.4.2 Case Study: Redundant Network Traffic

Proxy caches reduce the unnecessary transmission of
static data on the Web. However, redundant informa-
tion also exists in dynamic content like media streaming.
Spring et al. present a protocol-independent method to
eliminate redundant traffic between two endpoints, trad-

7

Figure 2: LBFS Client-server communication during example read (left) and write (right) operations. Note that LBFS
heavily pipelines its messages. Specifically, the write (left) example shows a COMMITTMP message sent with an
outstanding TMPWRITE. LBFS relies on the reliable and in-order delivery of its RPC calls.

Figure 3: A proposed architecture to remove redundant network traffic. Two nodes communicating over a bandwidth-
constrained link maintain shared caches. Each incoming packet is chunked and fingerprinted. The packet’s represen-
tative fingerprints are checked against the fingerprint index. If a match is found, the match window is expanded byte
by byte until a maximal redundant region is identified. The packet is encoded and sent as a smaller message — one
that includes pointers instead of duplicate data. Unmodified data packets are shown as red rectangles. Circles depict
encoded packets.

ing CPU and memory for reduced network bandwidth
[23].

For each incoming packet, the sender constructs a set of
representative fingerprints to use as anchors within the

packet. The fingerprint of the first window, and any finger-
print whose last n bytes are zero, are considered represen-
tative. Each representative fingerprint is checked against
the fingerprint index. For each match found, the incom-

8

ing packet and corresponding cached packet are compared
byte by byte in each direction until the maximal region of
overlap is identified. Repeated strings are encoded in a
now smaller packet, and passed to the channel endpoint.
The receiving channel endpoint expands the packet to its
original form and forwards it to its destination. Both the
sender and receiver add the packet to their packet cache,
and the representative fingerprints to their index. Oldest
members are evicted to keep caches manageable. Figure
3 shows the proposed architecture.

Like LBFS, this system is an example where CAS tech-
niques are applied when the “storage” is the network
rather than a persistent physical medium. The authors de-
tect that 30% of incoming traffic and 60% of outgoing
traffic is redundant with this system, so it appears to be
applicable to common workloads. When the cost of band-
width is more valuable than memory or CPU, this trade-
off makes sense. However, performance is highly reliant
upon patterns in the underlying data and cache size.

2.5 Virtual Memory

The primary goal of VMware ESX server is the over-
commitment of physical memory amongst many virtual
machines [26]. ESX server proposes ballooning, content
based sharing, and an idle memory tax—three indepen-
dent techniques to manage memory in unmodified guest
OSes. Content based sharing uses CAS methods, specif-
ically hash-and-compare, to detect and minimize redun-
dancy in memory pages.

Content based sharing is functionally similar to the
deduplicate detection of fixed-size disk blocks. ESX
server calculates the fingerprint of a candidate physical
page’s contents. If an identical fingerprint has been previ-
ously observed, the duplicate page is rehashed to ensure
that its contents have not changed. On success, duplicate
guest physical pages are mapped to a single host physical
page and marked copy on write.

The rate of churn amongst memory pages is very high,
making the fingerprinting and comparison of each page
impractical. Thus, ESX server samples to minimize over-
heads. In practice, the most common instance of redun-
dant data is the “zero page”.

ESX server represents an interesting point in the CAS
design space. ESX server performs duplicate detection
over a fixed pool of rapidly changing candidate pages.
Data is not immutable, so collisions must be verified as
matches for correctness. The fingerprint index is small
enough to fit in memory and must support rapid deletions.

3 Improving Dedup Systems

The two primary determinants of deduplication efficiency
are chunking method and index management. Although
related — average chunk size dictates the index size —
the index and chunking algorithm can be optimized sep-
arately. Subsection 3.1 introduces the disk-bottleneck
problem and discusses various methods to manage it.
Subsection 3.2 discusses optimizations to the sliding win-
dow algorithm and Rabin fingerprinting. Subsection 3.3
follows with a discussion on how to manage the evolution
of the data store.

3.1 The Disk Bottleneck: Efficient Indexing
Each new data segment added to the chunk store requires
a corresponding 〈hash, location〉 entry be inserted to
the index. The index quickly grows beyond the size of
main memory for high-volume systems. Consider a chunk
store which has grown to 20TB of unique data. If we store
only a chunk’s SHA-1 hash (20B) in the index, an average
chunk size of 4KB would result in a 100GB index!

Caching is often used to maintain high performance
when data structures exceed the bounds of memory. Un-
fortunately, SHA-1 fingerprints are independently and uni-
formly distributed, displaying no locality of reference. In-
dex caching is not possible, so other means must be devel-
oped.

3.1.1 Case Study: Data Domain

The Data Domain deduplication system [29] introduces
a three-tiered system to efficiently manage index queries.
The system has two goals: (1) minimize the number of
on-disk index lookups, and (2) use any work done in con-
sultation of the index to aid in satisfying future queries.

The first level is the summary vector, a simple Bloom
filter [3] that stores chunk fingerprints. A summary vector
query is an imperfect, in-memory check for index mem-
bership. False negatives are impossible, and the false pos-
itive rate is tunable. A false positive just means advancing
to level two, and does not add any additional disk seeks.

The locality preserving cache (LPC) comprises the
second tier. The LPC is an in-memory hash table of in-
dex entries containing only recently accessed and candi-
date entries. An LPC cache miss directs the control flow
to the final tier, the actual on-disk index.

The stream informed segment layout (SISL) groups
chunks from a single data stream into the same container.
Container layout is depicted in Figure 4. Metadata for
each chunk is kept at the head of the container. When
a miss occurs in the LPC, go to the disk to find the fin-
gerprint’s container. Then prefetch the segment descrip-
tors for all members of that container into the LPC. In

9

Figure 4: Container abstraction. Data from a single
stream is chunked and appended to a until the container
is filled. Chunk descriptors are stored contiguously at the
end of a container, in order to be efficiently read into to the
locality preserving cache. Containers are self-describing.

this way, the disk seek done to fetch one hash is used to
preload candidates and prevent future lookups. Figure 5
shows the possible paths of a fingerprint lookup.

The summary vector, LPC, and SISL work together to
reduce aggregate disk seeks for backup workloads. They
are effective as a unit because each component fills a dif-
ferent role, the relative importance of which changes over
time. The summary vector filters queries for new data
blocks, which are common during an initial backup; how-
ever, fewer new blocks are seen thereafter. LPC prefetch-
ing loads the previously encountered block fingerprints
from a single container into the cache. The LPC is most
effective for data that has been previously stored and
rarely changes. The LPC and SISL rely on chunk local-
ity. Chunk locality is a reasonable assumption for backup
workloads where files change incrementally. However,
for frequently changing files, chunk locality LPC prefect-
ing populates the cache with dead block fingerprints.

Together, the three techniques removed up to 99% of
disk accesses for index lookups in two real deduplication
workloads.

3.1.2 Case Study: PRUNE

Prompt RedUNdancy Elimination (PRUNE) is an inline
deduplication archival system [17] that maintains a parti-
tioned index. Specifically, the PRUNE index is broken
into a series of smaller tables, called tablets, and each
tablet is a self-contained fingerprint database. Any given
fingerprint is stored in exactly one tablet, and the set of
all tablets comprises the complete index. A tablet is small
enough to fit into main memory.

At any moment, there is one tablet that is denoted cur-
rent. All insertions are made to the current tablet. When
the current tablet is full, a new, empty tablet is created
and marked as current. This design ensures that finger-
prints inserted in close temporal proximity will be stored
in close spatial proximity as well.

PRUNE keeps the set of all tablet descriptors in a linked
list. A fingerprint lookup first queries the table at the head
of the list, and proceeds through the list in order until the
fingerprint is found. On a “hit”, the containing tablet de-
scriptor is moved to the front of the list. Thus, tablets are
sorted in LRU order. PRUNE also experiments with tablet

prefetching. The hypothesis is that fingerprints in adjacent
tablets are accessed together. On a tablet hit, both the con-
taining tablet and its successor are moved to the front of
the list. Tablet prefetching has no noticeable effect when
compared to plain LRU.

PRUNE’s partitioned index is somewhat similar to Data
Domain’s LPC, but it does not rely on the SISL to be ef-
fective. It is a index optimization that can complement,
rather than replace, other measures. The partitioned index
introduces spatial locality to fingerprints that exhibit tem-
poral locality, despite the uniform distribution of SHA-1
hashes. The one parameter to optimize is tablet size. If the
tablet is too large, it will not fit in memory; smaller tablet
sizes will introduce additional tablet searches. Tablets are
ideal for systems with small, non-overlapping working
sets; keeping the entire working set in a single memory-
managed tablet would eliminate the disk bottleneck en-
tirely.

3.1.3 Case Study: AMQ Data Structures

Bloom filters are a standard mechanism to query index
membership. Bloom filters provide a tunable false posi-
tive rate, and can therefore prevent unnecessary disk ac-
cesses for fingerprints absent from the index. Large index
sizes, however, may cause a Bloom filter to exceed mem-
ory capacity, at which point Bloom filter queries them-
selves trigger disk seeks.

Bender et al. [2] introduce an approximate membership
query (AMQ) data structure called the cascade filter, that
is designed to efficiently spill out of memory and onto
flash storage. A single cascade filter comprises l levels
of increasingly large quotient filters. The first level con-
tains one in-memory quotient filter of size M, with the
remaining quotient filters maintained on flash. The ith on-
flash quotient filter is of size 2iM, because quotient filters
implement efficient doubling, halving, and merge opera-
tions.

A quotient filter breaks a fingerprint into two parts: the
most significant q bits (quotient), and the least significant
r bits (remainder). The quotient determines a fingerprint’s
index, and is never explicitly stored. The bucket indexed
by an element’s quotient is called its canonical slot, and
the remainder is stored in a fingerprint’s canonical slot in
the absence of collisions.

In the case of a collision, remainders are stored in a
run. A run is a sorted list of remainders with the same
canonical slot. A maximal sequence of adjacent runs is
called a cluster. Collision resolution can cause an entire
cluster to shift — including remainders that do not share
canonical slots. In fact, only the first colliding run in a
cluster will start at its canonical slot.

Three additional bits are kept at each bucket to help
resolve collisions. The is occupied bit denotes that a

10

Figure 5: The Data Domain file system mitigates the disk bottleneck with its three-tiered architecture. The first level
is a Bloom filter, which provides efficient in-memory approximate membership queries. A positive Bloom filter hit
triggers a lookup in the in-memory locality preserving cache. A miss in the locality preserving cache finally results in
an index lookup. Instead of reading just the requested fingerprint, all chunk descriptors from the containing segment
are read into the locality preserving cache, evicting the oldest set of segment chunk descriptors.

bucket is the canonical slot for at least one fingerprint
present in the quotient filter. The is continuation bit
signifies that a bucket stores an element of a run. The
is shifted bit signifies that the element in the bucket is
not in its canonical slot. A quotient filter example can be
seen in Figure 6 that details the usage of these bits.

Clearly, quotient filters can be efficiently merged (sim-
ilar to merging sorted lists), halved in size (reinsert runs
from left to right), and doubled in size (reinsert runs from
right to left). These operations drive the cascade filter’s
l-level design.

Insertions are always made into the in-memory quo-
tient filter at level 0. Whenever the level 0 quotient fil-
ter reaches maximum load, the first empty level i is iden-
tified. Quotient filters on levels 0, . . . , i− 1 are merged
into level i and cleared. Thus, insertions are always satis-
fied in-memory and require O((log(n/M))/B) amortized
blocks writes/clears, where n is the number of fingerprints

and B is the block size.

Lookups require one block read per level, until the fin-
gerprint is found. This results in a worst-case lookup of
O(log(n/M)).

AMQ data structures are an essential optimization to
avoid the disk bottleneck in archival CAS systems. Yet
Bloom filters are often sufficient — the value of cascade
filters only comes when a Bloom filter cannot fit into
main memory. Cascade filters are write-optimized be-
cause archival systems provide cold storage. The primary
concern is that backups complete in the prescribed win-
dow. And although index lookups are more frequent than
insertions, the design of cascade filters creates locality of
reference despite the uniform distribution of fingerprints.
The most recently inserted fingerprints will always be at
the uppermost levels.

11

Figure 6: The four members inserted into the quotient filter are each shown above their canonical slot, with quotient
and remainder separated by a vertical bar. The first bit signifies that an index is the canonical slot for some element in
the quotient filter, the second bit that the element stored in the slot is part of a run, and the third bit that the slot is not
the canonical slot for the element it contains.

3.1.4 Case Study: Sparse Indexing

Sparse indexing (SI) is another technique to avoid the
chunk index disk bottleneck in an inline archival dedu-
plication system [14]. The system borrows its disk layout
and data container policies from Data Domain [29], but
takes an otherwise different approach to the problem - SI
fits its entire index in memory by storing only a fraction
of its fingerprints in the index.

SI breaks each data stream into variable-sized chunks
using the two thresholds two divisors (TTTD) chunking
algorithm [9]. Chunks are then grouped into segments,
also using TTTD: TTTD is applied to chunk fingerprints
instead of chunk data. The sliding window is shifted
one chunk hash at a time instead of one byte at a time,
and a cut point is defined when the window’s finger-
print modulo a pre-defined divisor is −1. The segment
is SI’s unit of storage and retrieval, so all chunk data ref-
erenced by hashes before the cut point are deduplicated
and represented as a group. The hashes of each chunk
in a segment are stored in a segment manifest as set of
{〈chunk hash, location, length〉, . . .}.

For an incoming segment Si, SI samples a portion of
Si’s chunk hashes to be stored in the in-memory index.
Sampled hashes are referred to as hooks. A hook is cho-
sen when the first n bits of the chunk’s hash are 0, yielding
a sampling rate of 1/2n. Index entries map each hook to a
list of manifests in which the hook appears, and are of the
form 〈hook, {manifesti, . . .}〉.

For each hook in Si, SI retrieves from the index the list
of manifests that contain it. Then, SI iteratively selects
the manifest that contains the most hooks not present in
previously chosen manifests, until the maximum number
of manifests are chosen (or none remain). The selected
manifests are loaded into memory, and Si is deduplicated
against them.

Chunks not present in any manifest are written into a
data container on disk. SI creates a new manifest for Si
and adds it to the manifest store. Si’s hooks are then added
to the index. For hooks already present in the index, Si’s

manifest is appended to the list of containing manifests.
The design above illustrates destination deduplication

— the client sends all chunks to the server, even if the
chunk is a duplicate. The authors propose a compro-
mise between source and destination deduplication, in
which the client chunks, segments, and hashes the data
locally. The client then sends just the hashes to the server,
which chooses manifests, identifies duplicates, and re-
quests only the chunks it needs. Such an implementation
would greatly reduce network traffic.

SI relies on the assumption of chunk locality: the idea
that chunks in backup streams reoccur together. Chunk
locality implies that when two pieces of backup streams
share chunks, those backup streams share many chunks.
SI’s reliance on chunk locality limits the technique’s ap-
plicability to archival backups, since random reads and
writes do not exhibit this pattern.

The in-memory sparse index eliminates the disk bottle-
neck for fingerprint lookups, but SI requires several disk
seeks to load manifests. However, segments are on the
order of megabytes, so manifest reads are amortized over
thousands of chunks; loading manifests incurs negligible
overhead.

Duplicate chunks can be stored if the chunk’s finger-
print is not unique, but is not present an any of the candi-
date manifests. This does not compromise correctness; it
merely lowers the deduplication ratio. Chunk locality will
minimize, but not eliminate, this occurrence.

3.2 Chunking
Chunking is the division of a data stream into one or more
segments. The segment is the granularity at which data
is stored and redundant data detected; chunking, more
than any other system component, determines the sys-
tem’s deduplication ratio.

There are two dimensions in which to evaluate a chunk-
ing algorithm: run time performance and chunk quality.
Section §3.2.1 describes the two thresholds, two divisors
(TTTD) algorithm [9]. TTTD reduces chunk size vari-

12

ance and lowers the overhead introduced by small modi-
fications.

The comparison of the runtime performances of two
chunking methods is difficult. The speed of identifying
boundaries can be directly compared, but a system that
identifies more shared data will save disk I/O of dupli-
cate writes. TTTD provides more uniformly sized chunks,
which lowers the overall overhead of data insertions, but
does so at the cost of additional computations.

3.2.1 Case Study: Two Thresholds Two Divisors

The two thresholds, two divisors algorithm (TTTD) is a
generalization of the standard sliding window algorithm
(SW) described in Section §2.4.1. SW has three param-
eters: window size w, divisor D, and target t. LBFS ob-
served that for some inputs, SW produces very small or
very large chunks. LBFS enhanced the algorithm with
minimum and maximum chunk size threshold (Tmin and
Tmax) to bound chunk size. TTTD again extends the algo-
rithm and adds a second divisor D′.

For window W and target t, we say a fingerprint match
against divisor D occurs if

FINGERPRINT(W) mod D≡ t (2)

The TTTD algorithm slides a fixed-length window W
across the data stream byte by byte, starting at Tmin. TTTD
checks for a fingerprint match against D and D′ at each
position. A fingerprint match against D immediately halts
execution and defines a chunk boundary. A fingerprint
match against D′ is saved for future use. TTTD contin-
ues until reaching Tmax. The most recent fingerprint match
against D′, if any, defines the chunk boundary. Otherwise,
a boundary is inserted at Tmax.

A second divisor reduces chunk size variance — fewer
boundaries are defined by Tmax. Chunks defined by
Tmax are fixed-size chunks, and therefore suffer the same
boundary shifting problem. TTTD reduces the overhead
of data that is replicated not because it is redundant, but
because a chunk modification disassembled its previous
chunk. An appropriate choice of D′ reduces the overhead
of the second check.

3.3 Evolving the chunk store
An optimal deduplication system is insufficient if it can-
not scale to the desired workload. Resource reclamation,
returning allocated resources that are no longer in active
use, is one way to increase a system’s scalability. Grouped
mark and sweep (GMS) [8] reclaims unused data blocks
and scales proportional to the working set size rather than
the total storage capacity.

The traditional mark and sweep algorithm is broken
into two phases. The first phase is to iterate through all

files, and mark the segments that are in use. The sec-
ond phase is to iterate through all segments and release
any segments that are not marked. Mark and sweep is re-
silient to errors because it can be repeated without side
effects if stopped prematurely. However, mark and sweep
is not scalable because the sweep phase must touch each
segment in the file system.

Archival backups are incremental; between consecutive
backups, only a small working set of files change. GMS
reduces the number of files to touch in both the mark and
sweep phases by tracking changes at the granularity of
groups of files. GMS defines a backup as a set of files,
and a group as a set of backups. Between successive
runs, GMS maintains a list of all groups with modified
files. GMS only marks files in changed groups. Marks are
stored between runs and reused for any unchanged groups.
Between runs, GMS also keeps a list of all modified con-
tainers. Only containers with blocks contained by groups
with deleted files are used in the sweep phase.

The GMS goal is to scale with the size of the work-
ing set—the mark phase marks only modified groups and
the sweep phase sweeps only modified containers. In
practice, the actual scalability is determined by average
backup, group, and container size, and the locality of
chunk reference. A working set that contains blocks span-
ning many containers will suffer the same scalability is-
sues as traditional mark and sweep, so this technique is
primarily applicable to archival backups.

4 Data Verification

Increasing proportions of the world’s information are gen-
erated solely as electronic records. Unfortunately, the
stakeholders of most digital documents are not the ones
in control of the data’s physical storage. Documents are
often produced by one party in order to be consumed by
a second party while being managed by a third party; and
each party holds unique and often conflicting incentives
and allegiances.

Content addressable storage can verify data integrity. A
user simply recalculates and compares content addresses
to confirm that the data received exactly matches the data
requested. CAS also creates a unique global namespace,
preventing document overwrites, as well attacks such as
“name squatting”, where a namespace is polluted with
empty or irrelevant documents to distract from or crowd
out more meaningful documents. Unfortunately, users
must maintain mappings from human-readable handles to
metadata structures in order to reconstruct complete files
from content addresses. This leads to the common pattern
where untrusted servers export a content addressed block
store, over which mutually distrusting clients layer high
level abstractions to implement trusted storage. Table 2

13

summarizes the three systems discussed in this section.

4.1 Resisting censorship
In general, a system to resist censorship would have the
following properties:

Documents should be publishable anonymously, and
dissociable from any one publisher. Protecting the
identities of content producers and providers shields them
from third parties abusing influence. Additionally, it is un-
likely that the document be censored in its entirety when
multiple independent publishers are in control of the doc-
ument.

Data should be mobile and replicated. Mobility and
replication defend against denial of service and acts of na-
ture. Replication also disperses responsibility, so no one
host can be singled out by an influential third party.

The system should resist both malicious servers and
malicious publishers.

Actors should have incentives to cooperate and possess
limited capability to harm the system.

All parties should be aware whenever censorship has
taken place. Users should know if and when the system
has failed, even if recovery is not possible.

4.1.1 Case Study: Tangler

Tangler [25] is an example of a censorship-resistant sys-
tem. The basis of Tangler’s design is to tie the integrity
of each document to the integrity of other, previously ex-
isting documents through block entanglement. Entangle-
ment does two things: (1) directly incorporates replication
into the publishing process, and (2) makes reconstruc-
tion of source blocks from entangled blocks impossible
if blocks are modified. Entanglement is essential to Tan-
gler’s function, and will be discussed below. However,
this section only describes entanglement at a high level;
the focus of this document is on applications of CAS.

Tangler acknowledges that adversarial nodes will exist
regardless of its best efforts. The system is built to be self-
policing: as long as the majority of nodes are good, the
Tangler network can detect and eject adversarial nodes.
Every Tangler server can validate a response to any Tan-
gler request. If a server fails to respond, a user can for-
ward its request to a second server, enlisting the second
server as a witness of bad behavior. Malicious servers can
also be detected when contradictory responses are signed
by the same key. Additionally, Tangler takes steps to limit

the effect an adversary may have in two ways. First, pub-
lishers may only consume storage resources up to some
fraction of the resources that they themselves are willing
to provide. This limits the ability of adversaries to deny
service by flooding the network to capacity. Capacity is
managed through a credit system. Second, a node must
perform work that benefits Tangler, before it receives full
privilege in the Tangler network; a new server cannot con-
sume storage during the server’s first month in the net-
work. This ensures that any adversary that does harm the
system has already contributed towards an equal amount
of beneficial work.

The architecture of Tangler is divided into three compo-
nents: (1) publishing, (2) reconstruction, and (3) network
management. The following will detail Tangler compo-
nents in that order.

Documents are anonymously published in collections,
or groups of files published under the same public key.
The owner of the collection is the only one capable of
updating previously published documents, since he main-
tains sole possession of the private key. Public keys name
collections, and private keys sign them. The integrity of
a collection is verified using a hash tree [16]. Hash trees
allow users to verify large amounts of data but store only
a single SHA-1 hash.

The publication process takes as input a public/private
key pair and a directory, and outputs a set of entangled
blocks. Entangled blocks are named by their SHA-1 hash.
A hash tree is created for the collection and signed by the
collection private key. The resulting data is distributed to
nodes across the network.

The process of publishing a single data block repli-
cates two previously existing serer blocks. Further, any
change made to those dependent blocks will be evident
when reconstructing the original data. In order to pub-
lish a file, Tangler requires the file be split into fixed-size
data blocks. Tangler uses 16K blocks, with the last block
padded if necessary. Each 16K data block is entangled
with two random server blocks retrieved from the pool
of previously published server blocks, producing two new
server blocks. The two old server blocks are replicated
and the two new server blocks are added to the pool. Fig-
ure 7 shows the process of data block entanglement. No
plaintext data blocks are ever stored.

Next, the metadata required to reconstruct the file—
the SHA-1 of each entangled block—is recorded and the
metadata is entangled with two randomly selected server
blocks. The output of this entanglement is a list of four
server block names that can be used to reconstruct the file.

Each file in the directory goes through this process
of data segmentation and data block entanglement, then
metadata production and metadata entanglement.

The list of metadata block names and the metadata’s de-
pendent blocks are recorded in the collection’s root, which

14

System Description Keywords
Tangler Censorship-resistant document publishing Fixed-size block entanglement, replication, self-

policing, overlay network
SUNDR Tamper evident storage on untrusted servers Fork consistency, global block store, hash trees
SFS-RO Read-only distributed file system on untrusted

storage over untrusted channels
Self-certifying path names

Table 2: Data verification file systems.

Figure 7: Tangler files are first broken into 16KB data
blocks. Each data block is entangled with 2 random
blocks from the server block pool. Here, data block 1
is entangled with server blocks 2 and 3. The outputs are
two new server blocks, blocks 4 and 5. The data block is
discarded, but server blocks 2 and 3 are replicated when
blocks 2, 3, 4 and 5 are all published to the block pool.

is digitally signed and indexed by SHA-1 hash. Collection
roots store version numbers, so as to make update as sim-
ple as republishing with an incremented version.

Eventually Tangler grows a web of dependencies, large
enough that any unauthorized document changes do not
go unnoticed.

Tangler’s block entanglement is based on Shamir’s se-
cret sharing algorithm [22]. A secret s is divided into n
shares, such that k ≤ n of the shares are required to re-
construct n. Tangler uses n = 4,k = 3 — entanglement
produces 4 server blocks, and 3 of them are sufficient to
reconstruct the original data. We omit a complete descrip-
tion of the entanglement algorithm for brevity, as it is out-
side the focus of this work.

The Tangler network’s design is self policing, and it
incentivizes all actors to contribute toward the network’s
greater good. However, the CAS paradigm is the source
of Tangler security. Specifically, Tangler leverages the
properties of SHA-1 fingerprints to verify data, distribute

blocks, and prevent censorship:
• SHA-1 is a one-way function, so an adversary can-

not search for individual blocks by human-readable
means; he must already have complete knowledge of
the block in order to locate it.

• An adversary who successfully makes a change to
a block only creates a new one; the old block will
always exist at its original content address.

• An adversary in control of a server and able to fal-
sify block responses will be detected by users hash-
ing and comparing blocks upon receipt.

• The random distribution of addresses ensures that
blocks within a collection’s block set will likely not
be co-located, dissociating the responsibility of a col-
lection from any one server.

The negative impacts of CAS are few. The Tangler us-
age model is not demanding of high performance, so low
latency and CPU consumption are not a concern; net-
work delay will likely be the bottleneck. Tangler design
is markedly different from deduplication systems for an
obvious reason: replication is a primary Tangler goal.

4.2 Self-certifying file systems

The level of security actually provided to data is often dic-
tated by the available data management options and not
the needs of the data’s stakeholders. In what follows,
we detail the implementations of two systems that ad-
dress this problem in different ways. SUNDR [13] allows
clients to store data on untrusted servers, and guarantees
clients relative freshness. Further, the server cannot inter-
pret the data or alter file contents or metadata. Read-only
SFS [11] exports a global tamper-evident file system with
self-certifying pathnames. SFS endpoints can engage in
secure communication over unsecured channels without
reliance on a third party.

4.2.1 Case Study: SUNDR

SUNDR provides clients a file system interface to remote
storage. SUNDR [15] servers are managed by hosts that
are unable to interpret or modify stored data. And though
there is no guarantee that the server will behave, SUNDR

15

guarantees that any misbehavior will be detectable.

SUNDR is implemented in a two-level architecture. Its
foundation is the block server, which stores chunks of data
indexed by the cryptographic hash of their contents. And
though servers store blocks, they neither interpret nor un-
derstand them, enabling the owners of the physical server
to manage the storage without access to the file system
itself. The upper tier, the file system, is implemented en-
tirely on clients on top of the block store abstraction.

All client communication with the server occurs over
an authenticated channel. Servers possess public/private
key pairs, but can only access the server public key; pri-
vate key knowledge is restricted to the superusers of each
file system. A client and server negotiate a symmetric
session key for message authentication codes (MAC). A
MAC ensures that data arrives unmolested.

SUNDR’s blocks are addressed by the hash of their
contents. When storing a block, the the server also main-
tains a list of all users who reference the block, and a per-
user reference count. These reference counts are used to
implement garbage collection. Block store requests can
be for an entire data block, or, to save bandwidth, a com-
bination of new data and regions of existing blocks to be
concatenated. This allows for network efficient updates of
existing structures.

The file system contains several key data structures.
The virtual inode contains a file’s metadata, and is used
to reconstruct the file and verify its contents. The virtual
inode contains a list of the hashes of each block that makes
up the file. If the block list is too large to fit in one inode,
the last block hash refers to an indirect block, which con-
tains a continuation of the block list. Indirect blocks are
used to chain lists, and chains can extend to as many indi-
rect blocks as necessary. A consequence of this design is
that a seek to a long file requires the retrieval of multiple
indirect blocks.

Virtual inodes contain a 64-bit per-user inode number,
and the i-table maps these numbers to hashes of the vir-
tual inode’s data block. The i-table itself is also broken
into blocks, converted into a hash tree, and stored on the
server. The i-table’s hash-tree’s root is called the i-handle.
The relationship between SUNDR data structures is rep-
resented in Figure 8.

SUNDR maintains its consistency through counters.
Each user stores a version structure, shown in Figure 9.
The version structure contains the user’s i-handle, and a
set of 〈user, version number〉 pairs that completely
represent that user’s view of the file system state. A vi-
olation of SUNDR’s consistency protocol is illustrated in
Figure 10.

Figure 9: The SUNDR version structure. A user’s version
structure stores the user’s uid, ihandle, and version list.
A version list contains, for each user in the system, the
user’s most recent version number. The entire structure is
signed.

Figure 10: A sequence of writes by two users where fork
consistency is violated. The version list presented to user
1 and the version structure presented to user 2 can never
be resolved.

This protocol is sufficient to guarantee relative fresh-
ness.

Definition A file system provides relative freshness iff,
whenever user u1 sees the effects of an open or close op-
eration O by u2, then at least until u2 performed O, u1 had
close-to-open consistency with respect to u2.

CAS is essential to the design of SUNDR. CAS forms
the basis for verifying blocks and detecting unauthorized
modifications. CAS allows clients to address blocks rather
than files, preventing the server from interpreting the
data’s logical structure.

SUNDR is in no way optimized for run-time or re-
source efficiency. However the overheads induced by the
use of legacy index structures are secondary to the crypto-
logical and bookkeeping overheads required to guarantee
consistency. We also observe the common structure of a
complex client overlaying its file system over the block
store exported by simple servers.

4.2.2 Case Study: Read-only SFS

Read-only data often has performance, availability, and
security requirements. For example, Mozilla’s Firefox
web browser is publicly available for download as a bi-
nary executable, and Mozilla uses replication and caching
to lower download speeds and increase availability. This
replication adds to the attack surface as there are more
servers and therefore more opportunities for a binary to be

16

Figure 8: The interaction of data structures in SUNDR. Each user keeps an i-handle to retrieve and verify its file system
tree. Per-user i-tables store {usr inumber → ihandle} mappings. A per-group i-table adds a layer of indirection,
instead storing {grp inumber→ {principal, ihandle}} mappings. Virtual inodes contain metadata, followed by a list
of block SHA-1 hashes. For files that are large, indirect blocks store a continuation of the virtual inode’s list of data
block hashes. Directories list {pathname→{principal, inumber} mappings for each child.

compromised. The fast and secure read-only file system
(SFS-RO) verifies the integrity of read-only data stored on
untrusted servers, and the simple server design of SFS-RO
scales to many simultaneous connections [11].

SFS-RO functionality is broken into two roles, client
and server. The server is kept simple. A server’s primary
job is to satisfy requests for data blocks. The client is
responsible for implementing the file system, as well as
performing all cryptological operations.

Every file system has a public key, which is encoded
in the name of each file. All cryptological operations are
performed by the client, so a server will never require the
private key. The private key is used to digitally sign file
system objects.

An administrator runs the SFS-RO database generator
(sfsrodb) to create a file system. The sfsrodb takes
as inputs a directory of files and a private key. The
sfsrodb outputs a signed database mapping SHA-1 han-
dles to metadata and data blocks. SFS-RO uses the same
virtual inode metadata structure as SUNDR. Blocks are
keyed by SHA-1(iv, data) handles to limit a client’s ex-
posure to SHA-1 collisions. The file system owner then
replicates the signed database and all data as a collection

of content-addressed blocks onto untrusted servers.
A server can be any untrusted machine running the

SFS read-only server daemon (sfsrosd). sfsrosd re-
sponds to two RPCs: one that looks up a SHA-1 handle
in the database and serves the corresponding data block
(getfsdata), and one that returns a signed handle of the
file system’s root node as part of the file system summary
structure (getfsinfo). The FS INFO structure is shown in
Figure 11. The FS INFO structure is sufficient for a client
to reconstruct and verify the entire file system.

SFS-RO uses time to loosely enforce consistency—a
signed file system will expire after a configurable amount
of time. The start field in the FS INFO structure is
a timestamp of the file system signature. The file sys-
tem remains valid until (start + duration). Hence, the
duration field limits a client’s exposure to stale data.
duration also represents a commitment by the file sys-
tem owner to periodically republish the file system. A bal-
ance between publishing overhead and the window of vul-
nerability must found. To protect from a server “rolling
back” the file system to an unexpired but succeeded ver-
sion, clients cache the most recent timestamp.

Clients run the SFS read-only client daemon (sfsrocd)

17

s t r u c t FS INFO {
s f s t i m e s t a r t ;
unsigned d u r a t i o n ;
opaque i v [1 6] ;
s f s h a s h r o o t f h ;
s f s h a s h d b f h ;

}

Figure 11: The FS INFO structure is sufficient for a client
to reconstruct and verify the entire file system. The start
field records the timestamp of the signature, which is valid
until (start+duration). The iv field is used to avoid
SHA-1 collisions. The root fh is the SHA-1 handle of the
root directory, and the db fh is the handle for a hash tree
to verify all handles reachable from the root.

to interact with untrusted replicas. The sfsrocd receives
and responds to all local OS file system requests. The
sfsrocd must verify that all data read from untrusted
servers is unmodified, authentic, and fresh. Freshness is
handled by timestamps, as discussed above, and the dig-
ital signatures of FS INFO structures provide authentic-
ity. All blocks are content addressed, so verifying data
integrity is trivial.

The db fh is a handle for a hash tree verifying all han-
dles reachable from the root. The db fh can be inspected
if an expected handle is reported missing by a misbe-
having server. When the owner of a file system makes
changes, some files handles may be removed. The validity
of a handle not found response can be verified by the
db fh. Yet the db fh design imposes some overheads. A
single change in the file system requires much of the tree
to be recomputed. The db fh also has a negative effect on
clients with open files. If the iv is changed, all open files
become invalid. If a file is modified, any open instances of
that file become invalid. Future versions of SFS-RO will
abandoned the db fh altogether. Instead, clients will con-
struct the entire namespace locally, and then re-validate
all open handles when an update occurs.

SFS-RO is most similar to SUNDR—both SUNDR and
SFS-RO provide file system integrity on untrusted stor-
age. But SFS-RO and SUNDR solve different problems.
SUNDR users can read and write files with the guaran-
tee of fork consistency. Yet these guarantees impose a
heavy cost and do not necessary scale. SFS-RO needs
to scale well and it does. SFS-RO keeps the server sim-
ple. The burdens of complexity are pushed to the client,
and the read-only nature simplifies the consistency proto-
cols. Thus, SFS-RO servers can support many simultane-

ous connections.

Part I: Beyond virtual disks

Section §5 discusses the requirements of virtual storage,
presenting a case study of Ventana [19], a virtualization
aware file system. Ventana takes encapsulation, isolation,
and versioning — the most salient features of virtual disks
— and layers them over a distributed object store. Section
§6 revisits the content addressable storage paradigm, ar-
guing in favor of CAS as the basis for VM storage. We
present Conclave, a prototype implementation of a legacy
Linux file system over the CAS abstraction. Section §7
discusses future work, experiments, and enhancements to
Conclave design. Finally, Section §8 concludes.

5 Virtualization aware storage

Versioning, isolation, and migration are possible in vir-
tual disks because virtual disks fully encapsulate storage.
A virtual disk contains all files, captures all dependencies,
and tracks all file system state of a running virtual ma-
chine. As a result, a virtual disk copy is sufficient to re-
sume a VM on any compatible host. Full encapsulation
also allows VM users to version file system state. A snap-
shot of VM storage can form the base of an n-ary tree—
a golden client upon which customized virtual machines
are based. Snapshots can also capture development mile-
stones, or provide short term error recovery with a full-
system roll-back.

Yet for virtual disks, the granularity of these operations
is coarse. A user cannot migrate part of a virtual disk,
version a subset of files, or selectively share just a part
of storage. The granularity of a virtual disk operation is
the entire virtual disk, all-or-nothing. These limitations
are specific to virtual disks, and are not inherent to the
operations themselves.

5.1 Case study: Ventana

Ventana provides the feature set of traditional distributed
file systems, but adds versioning, isolation, and encapsu-
lation to meet the needs of virtual storage.

Ventana files are tracked in branches to manage ver-
sioning. Related sets of files are grouped into file trees,
and any tree can be tracked as a private, shared, non-
persistent, or volatile branch. A branches always begins
as an exact copy of some other branch, and form a lin-
ear chain of histories. Branch versions monotonically in-
crease: there is always a current branch, and any two ver-
sion numbers are directly comparable.

18

The two persistent branch types are distinguished by
the number of expected simultaneous client actors. A pri-
vate branch will only be modified by a single client VM
— there is no guarantee that a change made to a file in a
private branch will be propagated to a simultaneous exter-
nal viewer. Conversely, changes made to a file in a shared
branch are made immediately visible to others.

The remaining two branch types store ephemeral data.
A non-persistent branch is deleted upon VM reboot. Non-
persistent branches are designed for cases such as the
storage of the Unix /tmp directory. Volatile branches
are both non-persistent and local; volatile branches are
deleted upon VM migration in addition to VM reboot.

There are some files, such as password files, where ver-
sioning exposes a security risk. Ventana allows unver-
sioned files to accommodate. At any time, there exists
one copy of an unversioned file: the current version. Un-
versioned files cannot be rolled back.

To initialize VM storage, the user defines a view. Views
consist of one or more file trees mapped onto a names-
pace. View definitions specify a mount point, a branch
type, and set of branch permissions for each tree. An ex-
ample view might map the Debian root file system as a
read-only public branch, a set of standard applications as
a read- only public branch, and a home directory as a pri-
vate branch. Such view structures let administrators push
security patches to all users with a single branch patch,
and still provide users isolated personal storage in their
private branch.

Ventana protects file system resources with access con-
trol lists (ACLs) at three different granularities: file,
branch, and version. Any access requires the permission
of all ACLs protecting the resource.

File ACLs. The guest OS should have complete control
over how it delegates privilege. Guest file ACLs are man-
aged by the guest OS for this purpose. Guests may use
any format, but the Ventana prototype implements guest
file ACLs with standard Unix ACL semantics. Yet guest
file ACLs are not sufficient to mediate privilege in a net-
work file system. Sharing is central to Ventana’s design;
servers host the actual files, and servers may deny any
principal access to any resource, even if the guest OS al-
lows it. Servers exercise this control via server file ACLs.
Both guest and server file ACLs are part of file metadata;
modifications to file ACLs produce new file versions.

Version ACLs. Version ACLs are stored as a part of a
file’s version structure — not as part of the metadata ob-
ject. Hence, a version ACL may be changed without pro-
ducing a new version of the file. Ventana enforces version
ACLs as follows: “r” gives a principal the right to read a
file, and “c” the right to change a file’s version ACL. Ver-

sion ACLs control access to a particular version of a file,
even if that version exists in multiple branches.

Branch ACLs. A branch ACL mediates access to all
files in a branch and to all files in all that branch’s an-
cestors.

Table 3 details the Ventana enforcement policies.
Ventana servers are layered over an object store. Each

version of a file, each version of a file’s metadata, and each
branch is represented as a unique object. Files are iden-
tified by 128-bit random i-node number, and objects sim-
ilarly have 128-bit integer ids. For example, a single file
with i-node number 16 may have versions represented by
objects 13, 37, and 42, spread across branches 19700101
and 12122012.

A single metadata server hosts all databases used to
identify Ventana objects. The version database tracks
which object number represents the latest version of a file
in a particular branch. The branch database manages the
file system’s branch structures. Finally, there are two un-
named databases: the first maps branch names to object
numbers and the other database contains VM configura-
tions.

Client operation is implemented by the host manager.
Ventana requires one host manager per platform. The host
manager does not run in its own VM, but client VMs must
communicate with the host manager to read and write
data, and to take file system snapshots.

The host manager maintains both in-memory and on-
disk caches for files and their metadata. These caches de-
crease latency and enable disconnected operation. Caches
also add complexity to file system consistency — the re-
mote version database must be polled for updates on every
shared object access.

Host manager caches data at the granularity of whole
objects. Objects are immutable and may therefore be
cached indefinitely. Write buffering, in addition to reduc-
ing latency, limits excessive versioning: new versions are
only created by snapshot operations. All writes commit
to local disk and incur zero network traffic. Even explicit
flushes are committed locally. Write operations are unim-
peded by disconnection, and read requests are satisfied by
the local cache when possible. However, local changes
made to shared branches are not seen by external clients
and vice versa. When connection is reestablished, updates
are published to the server. Ventana does not address con-
flict resolution.

Ventana provides the features of a virtual disk without
any of the unwanted baggage. The guest overlays a dis-
tributed object store with its own file system personality,
divorcing VM storage from the physical host machine and
host software. This separation of file system management
from low-level storage abstractions is representative of the
structures of many CAS systems mentioned above, and

19

an appropriate division of labor. However, we think that
CAS provides a more expressive model than the object
store, and consequently use CAS as the foundation of our
virtualization aware file system prototype.

ACL Enforcer Versioned
File (guest) Guest OS Yes
File (server) Ventana Yes
Version Ventana No
Branch Ventana No

Table 3: A description of Ventana ACL types. File access
requires permission according to all ACLs.

6 Conclave

This section introduces Conclave, a file system design that
provides CONtent addressed loCaLly cAched ViEws of
cloud storage. Figure 12 illustrates the relationship among
the key components of Conclave.

Conclave is implemented in three tiers. Guest VMs,
or clients, communicate locally with a single CAS server.
Local CAS servers in turn communicate with an authori-
tative cloud server. Both local and cloud servers are static,
but clients have no mobility restrictions. Clients may be
checkpointed and migrated to any platform whose local
CAS server is associated with the client’s cloud.

Local CAS servers expose to clients two primary ab-
stractions: the key-value store and a content addressed
store of fixed-size blocks. The client layers its file sys-
tem personality on top of these abstractions. This design
divorces the guest OS management of high level file sys-
tem abstractions from the low level storage optimizations
of the CAS server. Further, the content addressed block
store presents to clients the illusion of infinite storage;
clients no longer struggle to incrementally add storage by
manually resizing file system partitions, as they do with
virtual disks.

6.1 Adapting CAS for primary storage
We have previously examined CAS in the context of veri-
fiable storage (§4), censorship resistance (§4.1), and dedu-
plication for large data backups (§2). The requirements
for primary storage are vastly different. This subsection
details the requirements of primary storage, and their in-
fluence on Conclave design.

Latency is critical to responsiveness and the user expe-
rience — low-latency must be a priority for any primary
storage solution. Contrast this with other applications of

CAS, where latency is either of no concern (backup, cen-
sorship) or a secondary consideration (verification).

Random reads and writes are the common access pat-
terns of primary storage. Contrast this with backup work-
loads. Backups must complete in limited time windows,
and consist of large streaming writes that exhibit chunk
locality. Reads occur rarely, if at all.

Deletion of data is actually prohibited in Venti [20], and
largely ignored by deduplication systems. In primary stor-
age, files are constantly evolving, which would result in
many unreachable blocks in a CAS block store. Blocks
must be detected as unreachable and reclaimed in order
for the system to scale. Minimizing the frequency of
writes through heavy buffering would also help reduce the
proliferation of unreachable blocks by reducing the stor-
age of intermediate file state.

We deviate from common practices in order to adapt
the CAS paradigm to primary storage. Specifically, Con-
clave stores all data in fixed-size, 4KB blocks. This
drawbacks of fixed-size blocks are discussed in detail
elsewhere (boundary-shifting problem §2.4.1), but stor-
ing some duplicate data does not conflict with our goals.
Conclave uses fixed-size blocks for two primary reasons:
• Efficient data transfer. We created a Linux kernel

module to perform fast copy-on-write (COW) trans-
fers of physical pages between VMs. 4KB is the de-
fault Linux page size on the x86-64 platform, and
is also the common block size of “green disks”. We
consequently use 4KB as the unit of transfer in Con-
clave — both for bulk IPC and as the block size of
data in the CAS store.

• Fast chunking. To reduce latency, we eliminate the
sliding window fingerprint calculations used to iden-
tify chunk boundaries in other systems. Data is trans-
ferred in units of CAS blocks, so no chunking is re-
quired.

Additionally, Conclave relies heavily on client side
caching for performance and scalability. Often, read and
write requests can be satisfied in-memory. For writes,
dirty data is not sent to the server until file close. This
heavy write buffering prevents wasteful consumption of
three resources: (1) CPU consumption for fingerprinting
incremental updates that are overwritten, (2) disk con-
sumption for writing intermediate blocks that are rendered
unreachable, and (3) fingerprint index size by preventing
dilution by intermediate block representations.

We describe the storage abstractions exported by CAS
servers in subsection 6.2, and the communication proto-
col in subsection 6.3. Then we present the prototype Con-
clave design. Subsection 6.4 describes our implementa-

20

Figure 12: An overview of Conclave architecture. Each host contains one local CAS server, which has complete
control over a region of physical media. Local clients communicate with the local CAS server. Local CAS servers
send and retrieve blocks from an authoritative CAS cloud server. The cloud may coordinate with many local CAS
servers, which makes client migration possible.

tion from the client’s perspective, §6.5 from the server,
and §6.6 from the cloud.

6.2 Storage abstractions
CAS servers provide three key storage abstractions over
which clients layer file system personality. This subsec-
tion describes those abstractions. The relationships be-
tween these abstractions are illustrated in Figure 13.
Recipe: A file recipe stores file metadata, and is used

to reconstruct a file from its constituent blocks. A
recipe begins with a variable-length metadata section,
into which clients may store data structures for inter-
nal management; the metadata section of our current
legacy Linux file system implementation contains file
size, ownership, permissions, and modification times.
Clients may store metadata in arbitrary formats, and the
CAS store makes no attempt to interpret this data. How-
ever, once allocated, the metadata section cannot be re-
sized.
Following the metadata section, a recipe stores a list of
a file’s data block fingerprints. Like data blocks, recipes
are chunked and committed to the CAS block store, so

recipe blocks are limited to a fixed length. To accommo-
date large files, recipe blocks are chained. Each recipe
block contains the SHA-1 fingerprint of its successor, or
NULL if it is the last block in a chain. We call the first
recipe block in a chain the recipe head, and successors
indirect recipe blocks. The fingerprint of a file’s recipe
head is its CAS handle, which is used for all read and
write operations. Clients may interact with the CAS
server directly, or they may map an arbitrary pathname
to a CAS handle in one or more namespaces.

Namespace: A namespace is a key-value store that con-
tains mappings from a pathname to the SHA-1 hash of
a recipe head. We use the term pathname loosely, as
namespaces may be keyed by arbitrary binary data. A
namespace is identified by its globally unique names-
pace identifier (NSID), which facilitates sharing and
migration. A client that wishes to share a namespace
with another client can communicate the NSID out of
band. We expect the CAS handles of common sys-
tem libraries to be stored in read-only namespaces with
well-known NSIDs. When a client migrates to a new
physical machine, the machine’s local CAS server re-
trieves requested namespaces from the cloud, if they

21

Figure 13: Relationships amongst the various Conclave storage abstractions. A namespace stores a set of related files
in a key-value store — namespaces map arbitrary binary data to the SHA-1 of a file’s recipe head. A file recipe is used
to reconstruct a file from the file’s constituent data blocks. The recipe head starts with variable-sized metadata section,
followed by a list of the file’s data block SHA-1 fingerprints. Conclave chains recipes for long files.

are not already present. A method to maintain consis-
tency amongst shared namespaces at separate local CAS
servers has been identified as future work.

Data block: A data block is a 4KB chunk of data that is
fingerprinted, indexed, and committed to the CAS block
store. A data block whose fingerprint is not contained
in any active recipe chain is said to be an unreachable
block. A recipe chain is active if the CAS handle of
its recipe head is contained in one or more namespaces.
Unreachable blocks may be reclaimed from CAS block
stores (local server and cloud).

6.3 Client-server protocol

A client interacts with a local CAS server through a well
defined API, as illustrated in Table 4. The server exposes
15 API calls to the client:
• Five calls deal exclusively with namespace manage-

ment. Clients can add, query, remove, and list keys.
SHA-1 hashes are not iterable.
• Two calls read and two calls write data. A client may

specify either the fingerprint of a recipe head, or a
key from a valid namespace as the target of the oper-
ation. The advantage of using a namespace entry is
that the server will update the 〈key,hash〉 mapping
upon success.
• One call to assert a 〈key,hash〉 mapping.
• Two calls are used to start and end a minitransac-

tion [1]. Minitransactions are mini because they do
not allow read operations. A client may make asser-

tions about the state of the namespace during a mini-
transaction. A batch of updates are executed atomi-
cally and durably if all assertions are true.

Function Tx? Notes
hash = get(key, ns)
put(key, hash, ns) Y
read(key, pages, offset Recipes may

ns) be referenced
read(hash, pages, offset) by key or hash.
newhash = write(key, pages, Y

offset, ns)
newhash = write(hash, pages,

offset)
m = getMeta(key, ns)
newhash = putMeta(m, key, Y

ns)
k1,k2... = listkeys(ns)
k1,k2... = listkeys(prefix,

delim, ns)
newhash = dropblocks(key,

newsize, ns)
success = drop(key, ns)
expect(key, hash, ns) Y Assert key map

to hash.
xbegin() Y Start minitrans-

action.
success = xend() Y End minitrans-

action.

Table 4: CAS Server API. Entries marked with a ’Y’ in
the Tx column may be issued in a minitransaction.

A VM is initialized with two channels. The first is a
byte stream over which control messages are exchanged
with the server. Control messages specify a message

22

type and the corresponding message parameters. The sec-
ond channel is for bulk data transfers in units of physical
pages. Each bulk transport channel endpoint maintains a
FIFO queue of pending pages. Control messages specify
the number and direction of pages to be passed, and the
bulk IPC module adds the memory to the corresponding
channel endpoint queue.

6.4 Client prototype

This section describes the prototype implementation of a
legacy Linux file system in Graphene. Graphene clients
layer file system personality over the exported server ab-
stractions.

Linux files are represented by recipes. Metadata is per-
sistently stored in the recipe head, including size, mode,
modification time, and target path if a file is symbolic
link. The client also maintains data structures analogous
to those of the Linux VFS: dentry, inode, file, and
address space. The dentry stores both the pathname
and the fingerprint of the recipe head for quick namespace
assertions. The address space buffers data and tracks
dirty pages.

Once a file is cached, most file system operations can be
satisfied with in-memory data structures. Caching serves
the dual purpose of decreasing latency and preventing the
proliferation of intermediate file state. Since CAS blocks
are immutable, a premature write consumes disk and in-
dex space. Writes are deferred until all open references
to buffered data are closed, at which point dirty pages are
written in a batch. Aggressive caching until file close,
together with atomic namespace updates, provides close-
to-open consistency.

Graphene clients store rooted file system trees in iso-
lated namespaces. Conclave represents namespaces as
key-value stores, so the client is responsible for maintain-
ing tree structure. Conclave was intentionally designed to
keep the server simple—clients pay for their own com-
plexity, but are at the same time granted much more free-
dom to deviate from traditional file system designs.

Namespaces may be shared amongst VMs. The total-
ity of VM storage comprises the union of one or more
namespaces. Manifests are used to initialize virtual ma-
chine storage. A Graphene manifest can specify a list of
namespaces and their corresponding mount points, in ad-
dition to other recognized file system types.

6.5 Server prototype

Local Conclave servers are granted complete control over
a fixed contiguous region of physical storage. In our
prototype implementation, servers interact with storage
through device drivers in the host OS.

Server storage is divided by function into isolated, non-
overlapping regions. The first two 4KB blocks are used
as checkpoint summary blocks. Checkpoint summary
blocks encapsulate the server state at a single point in
time. Checkpoint summary blocks specify checkpoint
completion time, the offset of a fingerprint index check-
point region, and the start of the data block region. When
a checkpoint is taken, the oldest valid summary block, if
any, is overwritten. Conclave can restore itself in the event
of system failure during a checkpoint operation by loading
the checkpoint specified by the older of the two summary
blocks.

The Conclave prototype uses a single in-memory radix
tree as its fingerprint index, which is periodically serial-
ized to one of two on-disk index checkpoint regions. The
block store size is a server parameter, so the storage re-
quired to checkpoint a full index is known a priori. The
two index regions are laid out consecutively.

The data section follows the index checkpoint regions.
A block manager allocates space using an in-memory
free-block bitmap. This bitmap is not check-pointed—
it is generated from scratch during index deserialization.
The data section is divided into 4KB blocks.

To commit a block, data structures must be reserved
in order, to maintain consistency in the event of error.
First, the block is fingerprinted an the index queried. If
the block’s fingerprint is found, no write is necessary. If
the fingerprint is not found, a special dummy value is in-
serted to signify that the block write is pending. The free
block bitmap reserves space on disk, and the block is writ-
ten at the reserved offset. The index is finally updated to
reflect write completion.

6.6 Cloud Prototype

We currently do not have an operational cloud prototype.
The cloud server will ultimately be very similar in struc-
ture to a local CAS server. However, the cloud will be
responsible for coordination amongst local CAS server
peers, especially for client migration. The cloud will also
be responsible for garbage collection, since the cloud is
the authoritative block store.

We implemented a prototype for basic mark and sweep
garbage collection on a local CAS server in anticipation
of cloud development. The server iterates through each
namespace, and adds the hash of each recipe-reachable
block to a Bloom filter. The server than walks the finger-
print index and removes each block mapping that is not in
the Bloom filter and has a timestamp older than the start
of the garbage collection process. It finally returns the
unmapped block to the free block map for future use.

23

7 Looking ahead

Conclave is a proof-of-concept prototype. This section
discusses potential optimizations and proposes modifica-
tions to Conclave design. The majority of proposed de-
sign changes are to the CAS server, in anticipation of the
cloud server implementation.

Index characteristics dramatically affect performance,
and an in-memory index is not practical for large data
stores. The three-tiered design of Conclave complicates
the index requirements, and index structure selection is
an open problem. We plan to investigate the efficacy of a
partitioned index, similar to tablets in PRUNE [17]. The
index will be broken into slices, each of which tracks an
individual working set.

Conclave must manage the migration of data between
local CAS servers and the cloud, both when clients mi-
grate and when data exceeds a local CAS server’s avail-
able space. Recall that a single cloud server is a system’s
authoritative CAS block store, and local CAS servers are
caches of that cloud data. A partitioned index reduces
the problem of data migration to working set manage-
ment. If an index slice comprises the data blocks of a
single client’s working set, then that index can be sent
to the cloud as a unit when the client migrates. Com-
pare this to a unified index, where data is evicted at block
granularity: each block eviction requires an index lookup,
disk seek, network transfer of fingerprint data, and in-
dex delete. However, an index slice could be sent to the
cloud as one data stream. The cloud server could walk
through the slice and identify the blocks that are not al-
ready present. If an earlier version of the slice existed at
the cloud, most lookups will be satisfied by queries to that
single, old slice. The sender can then transmit the (mostly
contiguous) blocks of the segment that the slice indexed
as one network stream. The entire local index slice can be
deleted, and blocks reclaimed, once the data is resident on
the cloud server.

We plan to explore containers for Conclave storage
management. The container abstraction is central to
the disk layout policies of many archival CAS systems
[8, 14, 17, 20, 29], and sparse indexing [14] uses contain-
ers as the unit of duplicate detection. Adapting contain-
ers will be a challenge. Containers are popular because
backup workloads exhibit chunk locality, but we do not
yet know if primary storage workloads will exhibit chunk
locality. Containers would nonetheless be attractive for
two reasons. First, containers are useful to implement
grouped mark-and-sweep garbage collection: the names-
pace data structure can be enhanced to track all containers
that store namespace-reachable data blocks. Second, con-
tainers could define the unit of indexing granularity for
an LRU-partitioned tablet index. A container and its slice
of the fingerprint index can be evicted from a local CAS

server to the cloud as a unit, a simple server management
policy.

Despite their benefits, containers would add complex-
ity to CAS server design. One CAS server is shared
amongst multiple clients. If clients interleave writes, a
single container would include data from multiple work-
ing sets. Two clients, each with a working set size of one
container, would instead span blocks across two contain-
ers. Another difficulty would be container cleaning. Some
systems, like Venti, prohibit data deletion and therefore do
not address this problem. For systems with resource recla-
mation, container cleaning is necessary to avoid fragmen-
tation. A primary goal of Conclave design is to keep CAS
servers simple. Expensive operations should be deferred
and pushed to the cloud if possible. Segment cleaning,
in addition to being an expensive operation, can only be
carried out at the cloud—as the authoritative server, only
the cloud knows which blocks can be safely reclaimed.
If containers quickly accumulate unreachable blocks, re-
sources would be wasted copying dead data to the cloud.

More performance evaluation of the Conclave proto-
type is necessary. We constructed a FUSE module that
mimics client behavior in order to expedite the testing pro-
cess. We can run any unmodified program on a mounted
FUSE file system; development of the CAS server can
thus proceed independently of Graphene.

The immutability of CAS blocks affects the aging of
storage in ways that we do not yet understand. The fol-
lowing aspects must be studied in order to select an ap-
propriate design:
• unreachable blocks
• working set size
• “hot” and “cold” data characteristics
A final point of exploration is the inclusion of scratch

space. If the main sources of latency are fingerprinting
and index lookups, it may be desirable to temporarily
commit data to a circular log and provide intermediate
pointers to address these blocks. Data can then be com-
mitted to the CAS store in the background, and pointers
replaced with actual content addresses.

8 Conclusion

This paper introduces Conclave, a prototype file system
designed in conjunction with Graphene, a Linux library
OS. Conclave explores a unique point in the CAS de-
sign space: primary storage. Conclave layers guest OS
personality atop a content addressed block store, and di-
vorces the management of high-level file system abstrac-
tions from low-level storage optimizations. Future Con-
clave development will focus on low-level storage opti-
mizations, such as block allocation, and attempt to address
concerns of scalability that arise in a frequently evolving

24

block store.

References
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kara-

manolis. Sinfonia: a new paradigm for building scalable dis-
tributed systems. In SOSP, pages 159–174, 2007. 22

[2] M. A. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.
Don’t thrash: how to cache your hash on flash. In HotStorage,
2011. 10

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. CACM, 13(7):422–426, jul 1970. 9

[4] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single
instance storage in windows 2000. In WSS, pages 13–24, 2000. 2,
4

[5] O. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making
backup cheap and easy. In OSDI, pages 285–298, 2002. 2

[6] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. In INFO-
COM, 2007. 5

[7] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
HYDRAstor: a scalable secondary storage. In FAST, pages 197–
210, 2009. 4, 5

[8] P. Efstathopoulos and F. Guo. Rethinking deduplication scalability.
In HotStorage, pages 7–7, 2010. 13, 24

[9] K. Eshghi and H. K. Tang. A framework for analyzing and im-
proving content-based chunking algorithms. HP Laboratories Palo
Alto HPL-2005-30R1, 2005. 2, 12

[10] L. Freeman. Looking beyond the hype: Evaluating data dedupli-
cation solutions. Netapp White Paper, September 2007. 2

[11] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure dis-
tributed read-only file system. TOCS, 20(1):1–24, February 2002.
15, 17

[12] D. Geer. Reducing the storage burden via data deduplication. Com-
puter, 41(12):15–17, Dec. 2008. 2

[13] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In OSDI, pages 121–136, 2004. 15

[14] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble. Sparse indexing: large scale, inline deduplication
using sampling and locality. In FAST, pages 111–123, 2009. 4, 12,
24

[15] D. Mazires and D. Shasha. Don’t trust your file server. In HotOS,
pages 113–118, 2001. 15

[16] R. C. Merkle. A digital signature based on a conventional encryp-
tion function. In CRYPTO, pages 369–378, 1988. 14

[17] J. Min, D. Yoon, and Y. Won. Efficient deduplication techniques
for modern backup operation. TC, 60(6):824–840, june 2011. 2,
4, 10, 24

[18] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth
network file system. In SOSP, pages 174–187, 2001. 2, 4, 6

[19] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization aware file
systems: Getting beyond the limitations of virtual disks. In NSDI,
pages 353–366, 2006. 18

[20] S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. In FAST, pages 89–101, 2002. 2, 3, 4, 20, 24

[21] M. O. Rabin. Fingerprinting by random polynomials. Harvard
Aiken Computational Laboratory TR-15-81, 1981. 2, 6

[22] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, Nov. 1979. 15

[23] N. T. Spring and D. Wetherall. A protocol-independent technique
for eliminating redundant network traffic. In SIGCOMM, pages
87–95, 2000. 8

[24] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago,
G. Calkowski, C. Dubnicki, and A. Bohra. HydraFS: A high-
throughput file system for the HYDRAstor content-addressable
storage system. In FAST, pages 225–238, 2010. 4, 5

[25] M. Waldman and D. Mazières. Tangler: a censorship-resistant
publishing system based on document entanglements. In CCS,
pages 126–135, 2001. 7, 14

[26] C. A. Waldspurger. Memory resource management in VMware
ESX server. OSR, 36(SI):181–194, 2002. 9

[27] Y. Won, J. Ban, J. Min, J. Hur, S. Oh, and J. Lee. Efficient index
lookup for de-duplication backup system. In MASCOTS, pages
1–3, sept. 2008. 3

[28] L. You, K. Pollack, and D. D. E. Long. Deep Store: An archival
storage system architecture. In IDCE, pages 804–815, 2005. 2, 3,
4

[29] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the
data domain deduplication file system. In FAST, pages 269–282,
2008. 3, 4, 9, 12, 24

25

	Introduction
	Deduplication
	Deduplication in a nutshell
	Design Choices
	Archival
	Case Study: Venti
	Case Study: Deep Store
	Case Study: Hydrastor

	Minimizing data transfer
	Case Study: LBFS
	Case Study: Redundant Network Traffic

	Virtual Memory

	Improving Dedup Systems
	The Disk Bottleneck: Efficient Indexing
	Case Study: Data Domain
	Case Study: PRUNE
	Case Study: AMQ Data Structures
	Case Study: Sparse Indexing

	Chunking
	Case Study: Two Thresholds Two Divisors

	Evolving the chunk store

	Data Verification
	Resisting censorship
	Case Study: Tangler

	Self-certifying file systems
	Case Study: SUNDR
	Case Study: Read-only SFS

	I Beyond virtual disks
	Virtualization aware storage
	Case study: Ventana

	Conclave
	Adapting CAS for primary storage
	Storage abstractions
	Client-server protocol
	Client prototype
	Server prototype
	Cloud Prototype

	Looking ahead
	Conclusion

