Deduplication: Overview & Case Studies

CSCI 333 – Spring 2020

Williams College

Lecture Outline

Background

Content Addressable Storage (CAS)

Deduplication

Chunking

The Index

Other CAS applications

Lecture Outline

Background

Content Addressable Storage (CAS)

Deduplication Chunking The Index Other CAS applications

Content Addressable Storage (CAS)

Deduplication systems often rely on Content Addressable Storage (CAS)

Data is indexed by some **content identifier**

The **content identifier** is determined by some function over the data itself - often a cryptographically strong hash function

I send a document to be stored remotely on some content addressable storage

CAS

Example:

The server receives the document, and calculates a unique identifier called the data's **fingerprint**

The fingerprint should be:

unique to the data - NO collisions

one-way

- hard to invert

The fingerprint should be:

unique to the data - NO collisions

one-way - hard to invert

10²⁴ objects before it is more likely than not that a collision has occurred

SHA-1:

20 bytes (160 bits)

 $\begin{array}{l} \mathsf{P}(\mathsf{collision}(\mathsf{a},\mathsf{b})) = (\frac{1}{2})^{160} \\ \mathsf{coll}(\mathsf{N},\,2^{160}) = ({}_{\mathsf{N}}\mathsf{C}_2)(\frac{1}{2})^{160} \end{array}$

CAS

Example:

de9f2c7fd25e1b3a... data

I submit my homework, and my "buddy" Harold also submits my homework...

Same contents, same fingerprint.

de9f2c7fd25e1b3a...

Same contents, same fingerprint.

The data is only stored once!

de9f2c7fd25e1b3a...

Background

Background

Content Addressable Storage (CAS)

Deduplication

Chunking The Index Other applications

Now suppose Harry writes his name at the top of my document.

The fingerprints are completely different, despite the (mostly) identical contents.

de9f2c7fd25e1b3a...

Problem Statement:

What is the appropriate granularity to address our data?

What are the tradeoffs associated with this choice?

Background

Background

Content Addressable Storage (CAS)

Deduplication Chunking

The Index

Other applications

Chunking breaks a data stream into segments

How do we divide a data stream?

How do we reassemble a data stream?

Division.

Option 1: fixed-size blocks

- Every (?)KB, start a new chunk

Option 2: variable-size chunks

- Chunk boundaries dependent on chunk contents

Division: fixed-size blocks

Division: fixed-size blocks

Division.

Option 1: fixed-size blocks

- Every 4KB, start a new chunk

Option 2: variable-size chunks

- Chunk boundaries dependent on chunk contents

Division: variable-size chunks

parameters:

Window of width *w* Target pattern *t*

- Slide the window byte by byte across the data, and compute a window fingerprint at each position.
- If the fingerprint matches the target, *t*, then we have a **fingerprint match** at that position

Division: variable-size chunks

Division: variable-size chunks

Division: variable-size chunks

Division: variable-size chunks

Sliding window properties:

- collisions are OK, but
 - average chunk size should be configurable
- reuse overlapping window calculations

Division: variable-size chunks

Rabin fingerprint: preselect divisor *D*, and an irreducible polynomial

$$\mathbf{R}(b_{1},b_{2},...,b_{w}) = (b_{1}p^{w-1} + b_{2}p^{w-2} + ... + b_{w}) \mod D$$

$$\mathbf{R}(b_{i},...,b_{i+w-1}) = ((\mathbf{R}(b_{i-1},...,b_{i+w-2}) - b_{i-1}p^{w-1})p + b_{i+w-1}) \mod D$$
Arbitrary previous previous vindow first

of width *w* calculation term

Recap:

Chunking breaks a data stream into smaller segments

 \rightarrow What do we gain from chunking?

 \rightarrow What are the tradeoffs?

- + Finer granularity of sharing
- + Finer granularity of addressing

- Fingerprinting is an expensive operation
- Not suitable for all data patterns
- Index overhead

Reassembling chunks:

Recipes provide directions for reconstructing files from chunks

Reassembling chunks:

Recipes provide directions for reconstructing files from chunks

CAS

Example:

Background

Content Addressable Storage (CAS)

Deduplication

Chunking

The Index

Other applications

The Index:

SHA-1 fingerprint uniquely identifies data, but the index translates fingerprints to chunks.

<chunk,> = {location, size?, refcount?, compressed?, ...}

The Index:

For small chunk stores:

- database, hash table, tree

For a large index, legacy data structures won't fit in main memory

- each index query requires a disk seek

- why?

SHA-1 fingerprints independent and randomly distributed - no locality

Known as the index disk bottleneck

The Index:

Back of the envelope:

Average chunk size: 4KB Fingerprint: 20B

20TB unique data = 100GB SHA-1 fingerprints

Disk bottleneck:

Data Domain strategy:

- filter unnecessary lookups
- piggyback useful work onto the disk lookups that are necessary

Disk bottleneck:

Summary vector

- Bloom filter (any AMQ data structure works)

Filter properties:

- No false negatives
 - if an FP is in the index, it is in summary vector
- Tuneable false positive rate
 - We can trade memory for accuracy

Note: on a false positive, we are no worse off

- We just do the disk seek we would have done anyway

Disk bottleneck:

Data Domain strategy:

- filter unnecessary lookups
- piggyback useful work onto the disk lookups that are necessary

Disk bottleneck:

Stream informed segment layout (SISL)

- variable sized chunks written to fixed size containers
- chunk descriptors are stored in a list at the head \rightarrow "temporal locality" for hashes within a container

Principle:

- backup workloads exhibit chunk locality

Disk bottleneck:

- filter unnecessary lookups
- piggyback useful work onto the disk lookups that are necessary

Disk bottleneck:

Locality Preserving Cache (LPC)

- LRU cache of candidate fingerprint groups

Principle:

- if you must go to disk, make it worth your while

Summary: Dedup and the 4 W's

Dedup Goal: eliminate repeat instances of identical data

What (granularity) to dedup?

Where to dedup?

When to dedup?

Why dedup?

Summary: Dedup and the 4 W's

What (granularity) to dedup?

Hybrid? Context-aware.

	Whole-file	Fixed-size	Content- defined
Chunking overheads	N/A	offsets	Sliding window fingerprinting
Dedup Ratio	All-or-nothing	Boundary shifting problem	Best
Other notes	Low index overhead, compressed/ encrypted/ media	(Whole-file)+ Ease of implementation, selective caching, synchronization	Latency, CPU intensive

Summary: Dedup and the 4 W's

Where to dedup?

source

Dedup before sending data over the network + save bandwidth

- client complexity
- trust clients?

Dedup at storage server + server more powerful - centralized data structures

<u>hybrid</u>

Client index checks membership, Server index stores location

Summary: Dedup and the 4 W's

When to dedup?

+ never store duplicate data
- slower → index lookup per chunk
+ faster → save I/O for duplicate data

- temporarily wasted storage
- + faster \rightarrow stream long writes, reclaim in the background
- may create (even more) fragmentation

<u>hybrid</u>

- \rightarrow post-processing faster for initial commits
- \rightarrow switch to inline to take advantage of I/O savings

Why dedup?

Perhaps you have a loooooot of data...

- enterprise backups

Or data that is particularly amenable to deduplication...

- small or incremental changes
- data that is not encrypted or compressed

Or that changes infrequently.

- blocks are immutable \rightarrow no such thing as a "block modify"
- rate of change determines container chunk locality

Ideal use case: "Cold Storage"

Why dedup?

Perhaps your bottleneck isn't the CPU

- Use dedup if you can favorably trade other resources

Example: Protocol Independent Technique for Eliminating Redundant Network Traffic

Background

Background

Content Addressable Storage (CAS)

Deduplication

Chunking

The Index

Other applications

Other CAS Applications

Data verification

CAS can be used to build tamper evident storage. Suppose that:

- you can't fix a compromised server,
- but you never want be fooled by one

Insight: Fingerprints uniquely identify data

- hash before storing data, and save the fp locally
- rehash data and compare fps upon receipt

