

 CSCI 333 – Spring 2020
Williams College

Deduplication: Overview & Case Studies

Lecture Outline

Content Addressable Storage (CAS)

Deduplication
Chunking

The Index

Background

Other CAS applications

Lecture Outline

Content Addressable Storage (CAS)

Deduplication
Chunking

The Index

Background

Other CAS applications

Content Addressable Storage (CAS)

Deduplication systems often rely on Content Addressable
Storage (CAS)

Data is indexed by some content identifier

The content identifier is determined by some
function over the data itself
 - often a cryptographically strong hash function

CAS

Example:
I send a document to be stored remotely
on some content addressable storage

CAS

Example:
The server receives the document, and
calculates a unique identifier called the
data's fingerprint

CAS

The fingerprint should be:

unique to the data
- NO collisions

one-way
- hard to invert

CAS

The fingerprint should be:

SHA-1:

20 bytes (160 bits)

P(collision(a,b)) = (½)160

coll(N, 2160) = (
N
C

2
)(½)160

unique to the data
- NO collisions

one-way
- hard to invert 1024 objects before it is more likely

than not that a collision has occurred

CAS

Example:
SHA-1() = de9f2c7fd25e1b3a...

Name de9f2c7fd25e1b3a... de9f2c7fd25e1b3a... data

homework.txt

CAS

Example:
I submit my homework, and my “buddy”
Harold also submits my homework...

CAS

Example:
Same contents, same fingerprint.

de9f2c7fd25e1b3a...

de9f2c7fd25e1b3a...

de9f2c7fd25e1b3a... data

CAS

Example:
Same contents, same fingerprint.

The data is only stored once!

de9f2c7fd25e1b3a...

de9f2c7fd25e1b3a...

de9f2c7fd25e1b3a... data

Background

Content Addressable Storage (CAS)

Deduplication
Chunking

The Index

Background

Other applications

CAS

Example:
Now suppose Harry writes his name at the
top of my document.

CAS

Example:
The fingerprints are completely different,
despite the (mostly) identical contents.

de9f2c7fd25e1b3a...

fad3e85a0bd17d9b...

de9f2c7fd25e1b3a... data
fad3e85a 0bd17d9b... data'

CAS

Problem Statement:

What is the appropriate granularity to
address our data?

What are the tradeoffs associated with
this choice?

Background

Content Addressable Storage (CAS)

Deduplication
Chunking

The Index

Background

Other applications

Deduplication

Chunking breaks a data stream into segments

DATASHA1()

How do we divide a data stream?

How do we reassemble a data stream?

CK1 CK2 CK3SHA1(SHA1(SHA1() +)) +

becomes

Deduplication

Division.

Option 1: fixed-size blocks

- Every (?)KB, start a new chunk

Option 2: variable-size chunks

- Chunk boundaries dependent on chunk contents

Deduplication

Division: fixed-size blocks

hw-bill.txt hw-harold.txt

=

=

=

=

=

Deduplication

Division: fixed-size blocks

hw-bill.txt hw-harold.txt

=|=

=|=

=|=

=|=

=|=

=|=

Suppose Harold adds his name
to the top of my homework

This is called the
boundary shifting
problem.

Harold

Deduplication

Division.

Option 1: fixed-size blocks

- Every 4KB, start a new chunk

Option 2: variable-size chunks

- Chunk boundaries dependent on chunk contents

Deduplication

Division: variable-size chunks

Window of width w
Target pattern t

parameters:
- Slide the window byte by byte across the data, and

 compute a window fingerprint at each position.

- If the fingerprint matches the target, t, then we
have a fingerprint match at that position

Deduplication

Division: variable-size chunks

- Slide the window byte by byte across the data, and
 compute a window fingerprint at each position.

- If the fingerprint matches the target, t, then we
have a fingerprint match at that position

Deduplication

Division: variable-size chunks

hw-wkj.txt hw-harold.txt

Deduplication

Division: variable-size chunks

hw-wkj.txt hw-harold.txt

=|=

Suppose Harold adds his name
to the top of my homework

Only introduce one
new chunk to storage.

Harold

Deduplication

Division: variable-size chunks

Sliding window properties:

- collisions are OK, but
- average chunk size should be configurable

- reuse overlapping window calculations

Rabin fingerprints

Window w, target t
- expect a chunk ever 2t-1+w bytes

LBFS: w=48, t=13
- expect a chunk every 8KB

Deduplication

Division: variable-size chunks

Rabin fingerprint: preselect divisor D, and an irreducible polynomial

R(b
i
,...,b

i+w-1
) = ((R(b

i-1
, ..., b

i+w-2
) - b

i-1
pw-1)p + b

i+w-1
) mod D

R(b
1
,b

2
,...,b

w
) = (b

1
pw-1 + b

2
pw-2 + … + b

w
) mod D

Arbitrary
window

of width w

previous
window

calculation

previous
first
term

Deduplication

Recap:

Chunking breaks a data stream into smaller segments

→ What do we gain from chunking?

→ What are the tradeoffs?

+ Finer granularity of sharing

+ Finer granularity of addressing

- Fingerprinting is an expensive operation

- Not suitable for all data patterns

- Index overhead

Deduplication

Reassembling
chunks:

Recipes provide directions for reconstructing files from chunks

Metadata
<SHA1>
<SHA1>
<SHA1>

...

Deduplication

Recipes provide directions for reconstructing files from chunks

DATA
BLOCK

DATA
BLOCK

DATA
BLOCK

Reassembling
chunks:

CAS

Example:

Name de9f2c7fd25e1b3a... de9f2c7fd25e1b3a... recipe/data

homework.txt

Metadata
<SHA1>
<SHA1>
<SHA1>

...

???()

Deduplication

Content Addressable Storage (CAS)

Deduplication
Chunking

The Index

Background

Other applications

Deduplication

SHA-1 fingerprint uniquely identifies data, but
 the index translates fingerprints to chunks.

The Index:

<sha-1
1
> <chunk

1
>

<sha-1
2
> <chunk

2
>

<sha-1
3
> <chunk

3
>

 … …
<sha-1

n
> <chunk

n
>

<chunk
i
> = {location, size?, refcount?, compressed?, ...}

Deduplication

For small chunk stores:
- database, hash table, tree

For a large index, legacy data structures won't fit in main memory
- each index query requires a disk seek

- why?
SHA-1 fingerprints independent and randomly distributed

- no locality

The Index:

Known as the index disk bottleneck

Deduplication

Back of the envelope:

Average chunk size: 4KB
Fingerprint: 20B

20TB unique data = 100GB SHA-1 fingerprints

The Index:

Deduplication

Data Domain strategy:
- filter unnecessary lookups
- piggyback useful work onto the disk lookups that are necessary

Disk bottleneck:

Summary Vector

Stream Informed Segment
Layout (Containers)

Locality Preserving Cache
Memory

Disk

Deduplication

Summary vector

- Bloom filter (any AMQ data structure works)

Disk bottleneck:

Filter properties:
● No false negatives

● if an FP is in the index, it is in summary vector
● Tuneable false positive rate

● We can trade memory for accuracy

1 0 0 1 0 1 0 1 1 1 0 11 0 1 1

h
1

h
2

h
3

Note: on a false positive, we are no worse off
 - We just do the disk seek we would have done anyway

Deduplication

Data Domain strategy:
- filter unnecessary lookups
- piggyback useful work onto the disk lookups that are necessary

Disk bottleneck:

Summary Vector

Stream Informed Segment
Layout (Containers)

Locality Preserving Cache
Memory

Disk

Bloom Filter

Deduplication

Stream informed segment layout (SISL)
- variable sized chunks written to fixed size containers
- chunk descriptors are stored in a list at the head

→“temporal locality” for hashes within a container

Disk bottleneck:

Principle:

- backup workloads exhibit chunk locality

Deduplication

Data Domain strategy:
- filter unnecessary lookups
- piggyback useful work onto the disk lookups that are necessary

Disk bottleneck:

Summary Vector

Stream Informed Segment
Layout (Containers)

Locality Preserving Cache
Memory

Disk

Group Fingerprints:
Temporal Locality

Bloom Filter

Deduplication

Locality Preserving Cache (LPC)

- LRU cache of candidate fingerprint groups

Disk bottleneck:

Principle:

- if you must go to disk, make it worth your while

 CD
1

 CD
2

 CD
3

 CD
4

 CD
43

 CD
44

 CD
45

 CD
46

 CD
9

 CD
10

 CD
11

 CD
12

...

...

On-disk container

Deduplication

Disk bottleneck:

Fingerprint
in Bloom

filter?

No Lookup
Necessary

Fingerprint
in LPC?

On-disk fingerprint
index lookup: get
container location

Prefetch fingerprints
from head of target

data container.

Read data from
target container.END

START

Read request
for chunk

fingerprint

No

Yes

No

Yes

Deduplication

Dedup Goal: eliminate repeat instances of identical data

What (granularity) to dedup?

Where to dedup?

When to dedup?

Why dedup?

Summary: Dedup and the 4 W's

Deduplication

What (granularity) to dedup?

Summary: Dedup and the 4 W's

Whole-file Fixed-size Content-
defined

Chunking
overheads

N/A offsets Sliding window
fingerprinting

Dedup
Ratio

All-or-nothing Boundary shifting
problem

Best

Other
notes

Low index
overhead,
compressed/
encrypted/
media

(Whole-file)+

Ease of
implementation,
selective caching,
synchronization

Latency,
CPU intensive

Hybrid?
Context-aware.

Deduplication

Where to dedup?

Summary: Dedup and the 4 W's

source destination

Dedup before sending
data over the network

+ save bandwidth
- client complexity
- trust clients?

Dedup at storage server
+ server more powerful
- centralized data structures

Client index checks membership,
Server index stores location

hybrid

Deduplication

When to dedup?

Summary: Dedup and the 4 W's

post-process

hybrid

inline

Data Dedup Disk Data Disk

Dedup

→ post-processing faster for initial commits
→ switch to inline to take advantage of I/O savings

+ never store duplicate data
- slower → index lookup per chunk
+ faster → save I/O for duplicate data

- temporarily wasted storage
+ faster → stream long writes, reclaim in

the background
- may create (even more) fragmentation

Deduplication

Perhaps you have a loooooot of data...

- enterprise backups

Or data that is particularly amenable to deduplication...

- small or incremental changes

- data that is not encrypted or compressed

Or that changes infrequently.

- blocks are immutable → no such thing as a “block modify”

- rate of change determines container chunk locality

Why dedup?

Ideal use case: “Cold Storage”

Deduplication

Perhaps your bottleneck isn't the CPU

- Use dedup if you can favorably trade other resources

Why dedup?

Shared
Cache

Shared
Cache

Packet Store
(FIFO)

Packet Store
(FIFO)

Fingerprint
Index

Fingerprint
Index

Bandwidth Constrained
Link

Example: Protocol Independent Technique for Eliminating
Redundant Network Traffic

Background

Content Addressable Storage (CAS)

Deduplication
Chunking

The Index

Background

Other applications

Other CAS Applications

Insight: Fingerprints uniquely identify data

- hash before storing data, and save the fp locally
- rehash data and compare fps upon receipt

Data verification

CAS can be used to build tamper evident storage. Suppose that:

- you can't fix a compromised server,

- but you never want be fooled by one

!

!?!?!?!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

