
CS 333 :: Meeting Notes :: BƐ-trees

BƐ-trees, like LSM-trees are an example of a write-optimized key-value store. Write optimization uses batching
and scheduling to minimize the number of I/Os; by grouping many small updates into large I/Os, write-
optimized key-value stores can amortize the cost of setups across many operations.

BƐ-trees are a flexible data structure. By tuning BƐ-tree parameters, BƐ-trees present a range of points along
the optimal read-write performance curve. At one extreme, a BƐ-tree can be optimized for writes, essentially
acting as a "log". At the other extreme, a BƐ-tree can be configured to behave exactly as a B-tree, which is
optimized for queries. The flexibility of the data structure lets us adapt it to whatever our applications' needs
happen to be.

Be able to describe the way that BƐ-tree operations are performed, including a "new" operation called an
upsert
Be able to describe the asymptotic performance of BƐ-tree operations
Be able to describe the ways that changing B and Ɛ affect performance, both through asymptotic analysis
using the DAM model and the impact on I/O amplification.
Be able to compare BƐ-trees to B-trees and LSM-trees

The use of messages is one of the keys to good BƐ-tree performance. Internal BƐ-tree nodes are divided into
two regions: BƐ bytes are used to store pivot keys and pointers to children (just like normal B-tree nodes). The
rest of the node (B-BƐ bytes) is used as a buffer for pending messages.

Messages store updates to keys. Messages are inserted into the root of the BƐ-tree, and flushed towards the
leaves. When a message reaches its target leaf, the message is applied, and the resulting key-value pair is
written.

BƐ-trees implement all of the standard dictionary operations

insert(k,v)
v = search(k)
{(ki,vi), … (kj, vj)} = search(k1, k2)
delete(k)

But they add a new operation:

upsert(k, ƒ, 𝚫)

Learning Objectives

Messages

Operations



The name upsert hints at its meaning: an upsert is the combination of an insert and an update. Like all
operations, we encode an upsert as a message, and we insert the upsert message into the root of the BƐ-tree.

The mutation that an upsert describes is lazily applied. In other words, we can use an upsert to change a value
without first reading that value; we just know that at some point in the future, the upsert's changes will be
merged into the actual key-value pair. Until the work of merging is completed, the BƐ-tree still logically contains
the update; the update is just physically represented in a separate entity (the upsert message) than the key-
value pair. Updating a key-value pair without first reading it is called performing a blind update.

Upserts provide a general mechanism for encoding updates. The message provides a callback function ƒ and a
set of function arguments 𝚫, that are applied to the value associated with a target key. Many upserts can be
applied to a single key-value pair at a time.

BƐ-trees give users two knobs to turn: B and Ɛ.

B is generally large (2-8 MiB or more)
Using large nodes make range queries fast. Since we perform one seek per B bytes we are
incentivized to have large leaf nodes. The number of seeks need to read L values that are stored in leaf
nodes is O(L/B), so increasing B decreases the number of seeks.
Batching reduces the write amplification problem of that comes with using large nodes in standard B-
trees.

Since a group of messages are flushed together, we only modify a node when there have been
enough changes to make the I/O worthwhile.

Ɛ generally controls the tree's fanout
Ɛ must be between 0 and 1, and asymptotic analysis is often easiest at Ɛ=1/2

In practice, you often pick a maximum fanout rather than strictly choosing Ɛ
A large fanout makes the tree "short and fat". This helps with caching since it reduces the depth of the
tree, and we are often able to cache all of interior nodes
A small fanout makes the tree "tall and skinny", which helps with insertions. We are able to use more
of our nodes as a buffer, and we have larger "batches" of updates that move down the tree. This
means we spread the I/O costs of flushing across even more operations.

 

Upserts

Tuning Performance



BƐ-tree

1. How does the batch size affect the cost of an insert operation?
2. How does setting Ɛ=1 affect:

read performance?
update performance?

3. How does setting Ɛ=0 affect:
read performance?
update performance?

4. What data structures correspond to each of those settings (Ɛ=1 and Ɛ=0)?
5. How does a large B affect B-tree's:

read performance?
update performance?

6. How does a large B affect BƐ-tree's:
read performance?
update performance?

7. How does caching play into BƐ-tree performance? (Hint: where does most of the data live?)
8. Compare a BƐ-tree to an LSM tree.

How does compaction compare to flushing?
How do the two data structures compare for point queries?
How do the two data structures compare for range queries?
How would an LSM-tree perform in a workload with lots of upserts?

Thought Questions


