Bε-trees

CSCI 333 Williams College Bill Jannen

Last Class

- General principles of write optimization
 - Buffer updates and apply changes in large batches
- LSM-trees
 - Operations (Dictionary API, i.e., key-value store interface)
 - Performance
- LeveIDB SSTables store key-value pairs at each level
- Compaction strategies
 - Size-tiered compact K SSTables together when there is enough data to merge into the next "size tier"
 - Level-tiered compact one SSTable into all SSTables in the next that have overlapping key ranges

This Class

- Bε-trees
 - Operations
 - Performance
- Choosing parameters to tune performance
- Compare against B-trees and LSM-trees

Big Picture: Write-Optimized K-V Stores

- New class of data structures first developed in the '90s
 - LSM Trees[O'Neil, Cheng Gawlick, & O'Neil '96]
 - Bε-trees[Brodal & Fagerberg '03]
 - COLAS[Bender, Farach-Colton, Fineman, Fogel, Kuzmaul & Nelson '07]
 - XDicts[Brodal, Demaine, Fineman, Iacono, Langerman & Munro '10]
- Queries are asymptotically as fast as a B-tree (at least they can be in "good" data structures)
- Inserts/updates/deletes are orders-of-magnitude faster than a B-tree

Be-trees [Brodal & Fagerberg '03]

- Bε-trees: an asymptotically optimal key-value store
 - Fast in the best cases, good bounds on the worst-cases
- Bε-tree searches are just as fast as* B-trees
- Bε-tree updates are orders-of-magnitude faster*

B and ε are parameters:

- B → how much "stuff" fits in one node
- ε → fanout → how tall the tree is

Be-trees[Brodal & Fagerberg '03]

- Bε-tree leaf nodes store key-value pairs
- Internal Bε-tree node buffers store messages
 - Messages target a specific key
 - Messages encode a mutation
- Messages are flushed downwards, and eventually applied to key-value pairs in the leaves

High-level: messages + LSM/B-tree hybrid

Be-tree Operations

- Implement a dictionary on key-value pairs
 - insert(k,v)
 - $\mathbf{v} = \operatorname{search}(\mathbf{k})$
 - $\{(k_i, v_i), ... (k_j, v_j)\} = search(k_1, k_2)$
 - delete(k)
- New operation:
 - upsert(\mathbf{k} , f, Δ)

Talk about soon!

Updates

In many systems, updating a value requires:

```
read, modify, write — e.g., FFS writes, SSD blocks
```

- **Problem:** B^ε-tree inserts are faster than searches
 - fast updates are impossible if we must search first

```
upsert = update + insert
```

Upsert messages

- Each upsert message contains a:
 - Target key, k
 - Callback function, f
 - Set of function arguments, \(\Delta \)
- Upserts are added into the Bε-tree like any other message
- The callback is evaluated whenever the message is applied
 - Upserts can specify a modification and lazily do the work

B^ε-tree Upserts

Be-tree Upserts

Bε-tree Upserts

Bε-tree Upserts

Searching with Upserts

Upserts don't harm searches, but they let us perform **blind updates**.

 What types of operations might naturally be encoded as upserts?

Performance Model (Refesher)

- Disk Access Machine (DAM) Model_[Aggarwal & Vitter '88]
- Idea: expensive part of an algorithm's execution is transferring data to/from memory
- Parameters:
 - **B**: block size
 - M: memory size
 - **N**: data size

Performance = (# of I/Os)

Point Query: ?

Range Query:

Insert/upsert:

Goal: Compare query performance to a B-tree 0(log_BN)

- \rightarrow B ϵ -tree fanout: B^{ϵ}
- ightharpoonupB ϵ -tree height: $O(log_{B^{\epsilon}}N)$

Rule 1:
$$log_b(M \cdot N) = log_b M + log_b N$$

Rule 2:
$$\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$$

Rule 3:
$$\log_b \left(M^k \right) = k \cdot \log_b M$$

Rule 4:
$$\log_b(1) = 0$$

Rule 5:
$$log_b(b) = 1$$

Rule 6:
$$log_b(b^k)=k$$

Rule 7:
$$b^{log_b(k)} = k$$

$$\log_b(a) = \frac{\log_x(a)}{\log_x(b)}$$

https://www.khanacademy.org

$$log_{B^e}N = log_{B}N = log_{B}N = log_{B}$$
Change of base
$$= log_{B}N = log_{B}$$
Rule 6

Where: b > 1, and M, N and k can be any real numbers

but M and N must be positive!

Point Query: $O(\frac{\log_B N}{\varepsilon})$

Range Query: ?

Insert/upsert:

Point Query: $O(\frac{\log_B N}{arepsilon})$

Range Query: $O(\frac{\log_B N}{\varepsilon} + \frac{\ell}{B})$

Insert/upsert: ?

Point Query: $O(\frac{\log_B N}{\varepsilon})$ Range Query: $O(\frac{\log_B N}{\varepsilon} + \frac{\ell}{B})$

Insert/upsert: ?

Goal: Attribute the cost of flushing across all messages that benefit from the work.

→ How many times is an insert flushed?

ightharpoonup How many messages are moved per flush? $\mathbf{O}(\frac{\mathbf{B} - \mathbf{B}^{\varepsilon}}{\mathbf{B}^{\varepsilon}})$

$$B$$
- B ε B

- → How do we "share the work" among the messages?
 - Divide by the total cost by the number of messages

$$\frac{B-Be}{Be} = \frac{B^1}{Be} - \frac{Be}{Be} = \frac{B^{1-e}-1}{B^{1-e}-1}$$

Recap/Big Picture

- Setup costs are slow → big I/Os improve performance
- Bε-trees convert small updates to large I/Os
 - Inserts: orders-of-magnitude faster
 - Upserts: let us update data without reading
 - Point queries: as fast as standard tree indexes
 - Range queries: near-disk bandwidth (w/ large B)

Question: How do we choose **B** and ε?

• How do we choose ε ?

 Original paper didn't actually use the term B^ε-tree (or spend very long on the idea). Showed there are various points on the trade-off curve between B-trees and Buffered Repository trees

 $\varepsilon = 1$ corresponds to a B-tree

ε = 0 corresponds to a Buffered Repository tree

• How do we choose **B**?

- Let's first think about B-trees
 - What changes when B is large?
 - What changes when B is small?
- Bε-trees buffer data; batch size divides the insert cost
 - What changes when B is large?
 - What changes when B is small?

In practice choose **B** and "fanout". **B** \approx 2-8MiB, fanout \approx 16

- How does a Bε-tree compare to an LSM-tree?
 - Compaction vs. flushing
 - Queries (range and point)
 - Upserts

- How would you implement
 - copy(old, new)
 - delete("large") :: kv-pair that occupies a whole leaf?
 - delete("a*lb*lc*") :: a contiguous range of kv-pairs?

Next Class

• From Be-tree to file system!