B^ε-trees

CSCI 333
Williams College
Bill Jannen
Last Class

• General principles of write optimization
 ‣ Buffer updates and apply changes in large batches

• LSM-trees
 ‣ Operations (Dictionary API, i.e., key-value store interface)
 ‣ Performance

• LevelDB - SSTables store key-value pairs at each level

• Compaction strategies
 ‣ **Size-tiered** - compact K SSTables together when there is enough data to merge into the next “size tier”
 ‣ **Level-tiered** - compact one SSTable into all SSTables in the next that have overlapping key ranges
This Class

• B^ε-trees
 ‣ Operations
 ‣ Performance

• Choosing parameters to tune performance

• Compare against B-trees and LSM-trees
Big Picture: Write-Optimized K-V Stores

- New class of data structures first developed in the ’90s
 - $\text{B}^\text{\epsilon}$-trees [Brodal & Fagerberg ’03]
 - COLAs [Bender, Farach-Colton, Fineman, Fogel, Kuzmaul & Nelson ’07]
 - xDicts [Brodal, Demaine, Fineman, Iacono, Langerman & Munro ’10]

- Queries are asymptotically as fast as a B-tree (at least they can be in “good” data structures)

- Inserts/updates/deletes are orders-of-magnitude faster than a B-tree
Bε-trees [Brodal & Fagerberg '03]

- Bε-trees: an asymptotically optimal key-value store
 - Fast in the best cases, good bounds on the worst-cases
- Bε-tree searches are just as fast as* B-trees
- Bε-tree updates are orders-of-magnitude faster*

*asymptotically, in the DAM model
B and ε are parameters:
- $B \rightarrow$ how much “stuff” fits in one node
- $\varepsilon \rightarrow$ fanout \rightarrow how tall the tree is

$O(B^\varepsilon)$ children

$O(N/B)$ leaves

$O(\log_{B^\varepsilon} N)$
Bε-trees [Brodal & Fagerberg ’03]

• Bε-tree leaf nodes store key-value pairs

• Internal Bε-tree node buffers store messages
 ‣ Messages target a specific key
 ‣ Messages encode a mutation

• Messages are flushed downwards, and eventually applied to key-value pairs in the leaves

High-level: messages + LSM/B-tree hybrid
Bε-tree Operations

• Implement a dictionary on key-value pairs
 - insert\((k, v)\)
 - \(v = \text{search}(k)\)
 - \(\{(k_i, v_i), \ldots, (k_j, v_j)\} = \text{search}(k_1, k_2)\)
 - delete\((k)\)

• New operation:
 - upsert\((k, f, \Delta)\)

Talk about soon!
Bε-tree Inserts

All data is inserted to the root node’s buffer.
When a buffer fills, contents are flushed to children.
B\(\varepsilon\)-tree Inserts
B\(^{\varepsilon}\)-tree Inserts
Flushes can cascade if not enough room in child nodes
B$^\varepsilon$-tree Inserts

Flushes can cascade if not enough room in child nodes

Invariant: height in the tree preserves update order
Bε-tree Searches

- Read and search all nodes on root-to-leaf path

- Newest insert is closest to the root.

- Search all node buffers for messages applicable to target key
Updates

• In many systems, updating a value requires: read, modify, write

• **Problem**: \mathbb{B}^ε-tree inserts are faster than searches
 ‣ fast updates are impossible if we must search first

\[
\text{upsert} = \text{update} + \text{insert}
\]
Upsert messages

• Each upsert message contains a:
 • Target key, \(k \)
 • Callback function, \(f \)
 • Set of function arguments, \(\Delta \)

• Upserts are added into the \(B^\varepsilon \)-tree like any other message

• The callback is evaluated whenever the message is applied
 ‣ Upserts can specify a modification and lazily do the work
B^ε-tree Upserts

\text{upsert}(k,f,\Delta)$
B\(\varepsilon\)-tree Upserts

Upserts are stored in the tree like any other operation.
Bε-tree Upserts
Bε-tree Upserts
Searching with Upserts

Upserts don’t harm searches, but they let us perform **blind updates**.
Thought Question

• What types of operations might naturally be encoded as upserts?
Performance Model (Refesher)

• Disk Access Machine (DAM) Model [Aggarwal & Vitter '88]

• **Idea**: expensive part of an algorithm’s execution is transferring data to/from memory

• **Parameters**:
 - B: block size
 - M: memory size
 - N: data size

Performance = (# of I/Os)
Point Query: ?
Range Query:
Insert/upsert:

$O(\log_{B^\varepsilon} N)$
Goal: Compare query performance to a B-tree \(O(\log_B N) \)

B\(^\varepsilon\)-tree fanout: \(B^\varepsilon \)

B\(^\varepsilon\)-tree height: \(O(\log_{B^\varepsilon} N) \)

Rule 1: \(\log_b (M \cdot N) = \log_b M + \log_b N \)

Rule 2: \(\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N \)

Rule 3: \(\log_b (M^k) = k \cdot \log_b M \)

Rule 4: \(\log_b (1) = 0 \)

Rule 5: \(\log_b (b) = 1 \)

Rule 6: \(\log_b (b^k) = k \)

Rule 7: \(b^{\log_b (k)} = k \)

Where: \(b > 1 \), and \(M, N \) and \(k \) can be any real numbers

but \(M \) and \(N \) must be positive!

\[
\log_{B^\varepsilon} N = \frac{\log_B N}{\log_B B^\varepsilon} = \frac{\log_B N}{\varepsilon}
\]

Change of base

https://www.khanacademy.org

Point Query: $O\left(\frac{\log_B N}{\varepsilon}\right)$

Range Query: ?

Insert/upsert:
Point Query: $O\left(\frac{\log_B N}{\varepsilon}\right)$
Range Query: $O\left(\frac{\log_B N}{\varepsilon} + \frac{\ell}{B}\right)$
Insert/upsert: ?
Point Query: \(O\left(\frac{\log_B N}{\varepsilon}\right) \)

Range Query: \(O\left(\frac{\log_B N}{\varepsilon} + \frac{\ell}{B}\right) \)

Insert/upsert: ?
Goal: Attribute the cost of flushing across all messages that benefit from the work.

➡️ How many times is an insert flushed? \(O(\log_{B^\varepsilon} N)\)

➡️ How many messages are moved per flush? \(O\left(\frac{B - B^\varepsilon}{B^\varepsilon}\right)\)

➡️ How do we “share the work” among the messages?

- Divide by the total cost by the number of messages

\[
\frac{B - B^\varepsilon}{B^\varepsilon} = \frac{B^1}{B^\varepsilon} - \frac{B^e}{B^\varepsilon} = B^{1-e-1}
\]
Point Query: $O\left(\frac{\log_B N}{\varepsilon} \right)$
Range Query: $O\left(\frac{\log_B N}{\varepsilon} + \frac{\ell}{B} \right)$
Insert/upsert: $O\left(\frac{\log_B N}{\varepsilon B^{1-\varepsilon}} \right)$

Each insert message is flushed $O(\log_B N)$ times

Batch size \textbf{divides} the insert cost... Inserts are \textbf{very} fast!

Each flush operation moves $O\left(\frac{B - B^\varepsilon}{B^\varepsilon} \right)$ items
Recap/Big Picture

• Setup costs are slow \Rightarrow big I/Os improve performance

• B^ε-trees convert small updates to large I/Os
 - Inserts: orders-of-magnitude faster
 - Upserts: let us update data without reading
 - Point queries: as fast as standard tree indexes
 - Range queries: near-disk bandwidth (w/ large B)

Question: How do we choose B and ε?
Thought Questions

• How do we choose ε?

• Original paper didn’t actually use the term B^ε-tree (or spend very long on the idea). Showed there are various points on the trade-off curve between B-trees and Buffered Repository trees.

$\varepsilon = 1$ corresponds to a B-tree
$\varepsilon = 0$ corresponds to a Buffered Repository tree
Thought Questions

• How do we choose B?

• Let’s first think about B-trees
 • What changes when B is large?
 • What changes when B is small?

• B^ε-trees buffer data; batch size *divides* the insert cost
 • What changes when B is large?
 • What changes when B is small?

In practice choose B and “fanout”.

$B \approx 2$-8 MiB, fanout ≈ 16
Thought Questions

• How does a B^ε-tree compare to an LSM-tree?
 ‣ Compaction vs. flushing
 ‣ Queries (range and point)
 ‣ Upserts
Thought Questions

• How would you implement
 ‣ `copy(old, new)`
 ‣ `delete("large")` :: kv-pair that occupies a whole leaf?
 ‣ `delete("a*|b*|c*")` :: a contiguous range of kv-pairs?
Next Class

• From Be-tree to file system!