
File System Aging
Featuring slides modified from a talk by

Martín Farach-Colton
Rutgers University

This Class

Aging
• Two papers

‣Smith and Seltzer
‣Conway et al.

• How do people feel about the readings?

This Class

Aging
• Two papers

‣Smith and Seltzer
‣Conway et al.

• How do people feel about the readings?

Outline
• (Brief) I/O Models overview

• Definitions of Fragmentation

• Aging Problem

• Simulation and measurement

• Discussion

How do we model
performance?

How do we account for disk I/O?

DAM model: How theorists think about external
memory algorithms
• Data is transferred in blocks between RAM and disk.

• The number of block transfers dominates the running time.

Goal: Minimize # of I/Os
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]

Is the DAM Model
any good?

Short answer: Yes (2-competitive)

Long answer: No (can’t tune parameters)

Affine Model

Affine model:
• Data is transferred in blocks between RAM and disk.

• If k blocks are transferred, the cost is

• On hard disks, 1 is the normalized seek cost and ⍺ is the
incremental bandwidth cost of subsequent blocks

• On SSDs, it’s more complicated but affine still fits better than
DAM costs.

• (And PDAM fits even better…)

Goal: Minimize cost of I/Os
• Performance bounds are parameterized by block size B, memory

size M, data size N.

1 + αk

Takeaway: the affine model captures the size of I/Os
as well as the speed of the device itself.

Now We Have a Model, What Next?

The goal of our model is to predict performance.
We can verify “things” using a benchmark
• We compare two systems, A and B, by running the

same well-specified workload on each system

• We use our model to predict the relative performance of

A and B, and either:

‣Validate our hypothesis
‣Revise our model
‣Revise our theory because we learned something new about our

system and are better able to present an input to our model

To be useful, we need to run representative
benchmarks under representative conditions

Representative State

What is the representative state of a file system?
• How many files?

• What is the organization of the files (directory hierarchy)?

• What is the average size of a file? File size distribution?

Is the state of a file system a path or a point?
• It is a path.

‣Creating files limits/influences the placement decisions for future

operations
‣Deleting files creates “holes” in the LBA space
‣Moving (renaming) files alters the relationships between files

• It isn’t enough to look at the contents of a file system in
isolation, we need to know where we started and how we
got there.

Aging

Theory: many file systems will age.
• Aging: the degradation of performance over time.

‣Our models predict this
‣ heuristics lead to fragmentation
‣ fragmentation leads to increased seeks on important workloads

Two open questions:
• Is the representative state an aged file system?

• If so, how do we create a representatively aged file

system?

Does aging happen on
modern file systems?

Do file system age?

Do file system age?

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
 fragmentation in normal use.”

“If you do have problems with fragmentation on Linux, you
probably need a larger hard disk.”

http://howtogeek.com

Do file system age?

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
 fragmentation in normal use.”

“If you do have problems with fragmentation on Linux, you
probably need a larger hard disk.”

“Modern Linux filesystems keep
fragmentation at a minimum…Therefore it is
not necessary to worry about fragmentation

in a Linux system.”

http://howtogeek.com

I guess not. Then was
it ever a problem?

Do file system age?

So: as of 1997, file systems aged.
Then file systems got better, and sys admins say
they don’t age.

What’s the actual story?

Theory of Aging over
the Ages

Euclid’s view of hard disks

101
0

0

Year: X+~4 years

Euclid’s view of hard disks

101
0

0

Year: X+~4 years

Density: doubles in

each dimension every

4 years or so

Euclid’s view of hard disks

Year: X+~4 years

Density: doubles in

each dimension every

4 years or so

101
0

0

α ∝
1

D

Hard disks gradually increase ⍺

Measurements one decade have a sell-by date
… unless you solve the problem algorithmically

Perspective

Assumption
• Random seek is 100x slower than sequential

• 1% of blocks are non-sequential in the file system

Conclusion
• That’s enough to limit IO to 50%

So, for people who think that file systems don’t
age, are you sure that modern file systems
keep fragmentation to under 1%?

Which File Systems Age?

File Systems
Types

Logging:

F2FS

B-tree:

BtrFS

Bε-tree:
BεtrFS

Heuristic
based

update-in-
place:

FFS, ext4, …😳 🤔 🤓

🤔Should

age

Should

age

Should

age

Shouldn’t

age

Let’s test the hypothesis!
How?

Smith and Seltzer ‘97

Keith Smith started grad school in ’92
• He decided to take snapshots of a bunch of computers

• Every day

• For years

He and Seltzer found that:
• If you replay the changes implied by the snapshots

• File system performance degrades

• On file systems available in ’97

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

get coffee

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

git pull

get coffee
git pull

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

git pull

make

get coffee
git pull
make

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

git pull

make

get coffee
git pull
make
get coffee

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

git pull

make

get coffee
git pull
make
get coffee
git pull

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

git pull

make

git pull

make

get coffee
git pull
make
get coffee
git pull
add awesome features

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

git pull

make

git pull

make

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

git pull

make

git pull

make

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We are impatient

We’d like a history of file systems changes
• That we can replay on any system

• We don’t have to wait for years

• Years of history should be readily available

Let’s model a very simple case: Developers

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We are impatient

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We can simulate a developer by
replaying Git histories

Simulating a Developer

Do 100 git pulls

Measure Performance

Use the Linux kernel repo from github.com

http://github.com

How do we measure fragmentation?

Like timing a preorder traversal of tree…

Should measure fragmentation
• Why?

time grep -r random_string /path/to/fs

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging

Metadata
Fragmentation

Intrafile
Fragmentation

Interfile
Fragmentation

Then normalize per gigabyte read

Do modern file
systems really age?

Git workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

2x slowdown2x slowdown

14.3x

Git workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

14.3x
Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

2x slowdown

4x slowdown

Git workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

15 minutes to grep 1.2GiB
14.3x

Ruling out alternative
explanations

Is it a change in the
file system?

Smaller files, shallower tree, …

File System Rejuvenation

Idea: copy same logical state to new partition
• After each 100 pulls

• Compare grep cost

Aging ext4 with Git on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better Aged

Unaged

8.8x

Maybe it’s full disks?

Nope: 20GiB partition, 1.2 GiB data

Aging ext4 with Git on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better Aged

Unaged

8.8xSmaller average file size
makes the unaged 60% slower

Is it just ext4?

Aging other file systems with Git on HDD
Btrfs

0

200

400

600

800

F2FS

0

500

1000

1500

2000

ZFS

0

500

1000

1500

2000

XFS

0

200

400

600

800

20.6x 22.4x

2.2x

weird unaged
behavior on XFS

11.8x

Lower is better

Will SSDs save us?

1.9x

Git Workload on XFS on SSD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

10

20

30

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Aged

Unaged

Lower is better

Other file systems give similar results (~2x slowdown)

And now for BεtrFS

Git on BεtrFS on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

BetrFS

XFS

ext4/F2FS/ZFS Btrfs

F2FS ZFS
ext4

Btrfs

XFS

— Aged

— Unaged

Git on BεtrFS on HDD

BetrFS
— Aged

— Unaged

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

20

40

60

80

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Btrfs

F2FSext4

ZFS

Lower is better

And SSDs?

Git on BεtrFS on SSD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

10

20

30

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Btrfs

ZFS

Lower is better

— Aged

— Unaged
BetrFS

File Systems Fated for Senescence?
Nonsense, Says Science!

🃟Rutgers University, ♢The University of North Carolina at Chapel Hill,
♠Stony Brook University, ♡Oracle Corporation and Massachusetts

Institute of Technology, ♣Farmingdale State College of SUNY

Alex Conway🃟 Ainesh Bakshi🃟 Yizheng Jiao♢

Yang Zhan♢ Michael A. Bender♠ William Jannen♠

Rob Johnson♠ Bradley C.
Kuszmaul♡

Donald E. Porter♢

Jun Yuan♣ Martin Farach-
Colton🃟

