VFS and A Simple File System
CS333 S20 :: Meeting 05

Course Logistics

« Lab 1

» Due tonight. Anyone Stuck?

* TA session tonight with Jacob
» Next class: FUSE

» Documentation is scattered across many locations, as is
tradition with open-source projects...

* We will use FUSE in a “lab session” next Thursday with
our guest Tom

Course Logistics

* Lab 2: Hello FUSE
* Build “restricted functionality” file system using FUSE:
» Allow reading and writing to 1 file only
» Can’t create new files or delete existing files
» We will be using “Panic” machines in TCL 312
» Given “root” privileges; use non-CS accounts

* (required) partners for lab due to limited machines &&
because it is likely how you will be working in the “real world”

Last Class

« HDDs
o Geometry
« Caching

« Scheduling

This Class

* VFS and Simple File system

* Similar in practice to some real file systems (FFS,
ext4)

* This is the design we will implement later in Lab

Key VFS Data structures

* inode

» Persistent information about a single file

* “Index” node (indirection node?)
* superblock

* Persistent information about entire file system
* Allocation structures (several types)

* Free list, bitmap, extent list, etc.

Simple File System: On-Disk Layout

e Space partitioned into data and metadata
o Superblock is located in the first block
o Why?
« Static inode table

 Static data block allocation bitmap

Simple File System: On-Disk Layout

\ Inodes . Data Region
DDDDDDDD DID]D]D]DJD]D]D DDDDDDDD
15 16 23 24
Data Region
DDDDDDDD D[D]D]D]DID]DID] [D]D]D]D]D]D]D]D DDDDDDDD
39 40 47 48 55 56

(OSTEP Chapter 40)

Simple File System On-Disk Layout

The Inode Table (Closeup)

- - - ' iblock 0 ' iblock1 ' iblock2 ' iblock 3 ' iblock 4

2(3]16|17]|18(19(32|33(34(35]|48|49|50|51|64(65(66|67
6|7 (20]|21|22(23|36|37|38(39|52|53(54(55|68|69(70|71
10|11(24]25|26(27|40|41|42(43|56|57(58(59|72|73(74|75
14|15(28|29|30(31]44|45|46(47|60|61(62(63|76|77(78|79

OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

(OSTEP Chapter 40)

Example inode Fields (ext?2)

Size Name What is this inode field for?
2 mode can this file be read /written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links.count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osdl an OS-dependent field
——» 60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file.acl a new permissions model beyond mode bits
4 dir.acl called access control lists

Figure 40.1: Simplified Ext2 Inode

(OSTEP Chapter 40)

Access Patterns:
open(“/foo/bar”), read()

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data[0] data[l] data[2]

read
read
open(bar) read 4
rea

read

read
read() read
write

read
read() read
write

read
read() read
write

Access Patterns:
Creating a File

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data[0] data[l] data[2]
read
read
read
read
create read
(/foo/bar) write
write
read
write
write
read
read
write() write
write
write
read
read
write() write
write
write
read
read
write() write
write
write

Figure 40.4: File Creation Timeline (Time Increasing Downward)

VFS Handout
(sync up at end)

Course Logistics: Up Next

e Lab 2 (Hello, FUSE!)

* Fill out partner survey (linked on course “labs”
page)

« Tom will help to answer questions during lab

* I'll be gone next Monday afternoon until Sunday
(FAST conference)

