
VFS and A Simple File System
CS333 S20 :: Meeting 05

Course Logistics

• Lab 1 

• Due tonight. Anyone Stuck? 

• TA session tonight with Jacob

• Next class: FUSE 

• Documentation is scattered across many locations, as is 
tradition with open-source projects… 

• We will use FUSE in a “lab session” next Thursday with 
our guest Tom



Course Logistics

• Lab 2: Hello FUSE 

• Build “restricted functionality” file system using FUSE: 

• Allow reading and writing to 1 file only 

• Can’t create new files or delete existing files 

• We will be using “Panic” machines in TCL 312 

• Given “root” privileges; use non-CS accounts 

• (required) partners for lab due to limited machines && 
because it is likely how you will be working in the “real world”

Last Class

• HDDs 

• Geometry 

• Caching 

• Scheduling



This Class

• VFS and Simple File system 

• Similar in practice to some real file systems (FFS, 
ext4) 

• This is the design we will implement later in Lab

Key VFS Data structures

• inode

• Persistent information about a single file 

• “Index” node (indirection node?) 

• superblock

• Persistent information about entire file system 

• Allocation structures (several types) 

• Free list, bitmap, extent list, etc. 



Simple File System: On-Disk Layout

• Space partitioned into data and metadata 

• Superblock is located in the first block 

• Why? 

• Static inode table 

• Static data block allocation bitmap

Simple File System: On-Disk Layout

4 FILE SYSTEM IMPLEMENTATION

simple structure: each bit is used to indicate whether the corresponding
object/block is free (0) or in-use (1). And thus our new on-disk layout,
with an inode bitmap (i) and a data bitmap (d):

0
i d I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

You may notice that it is a bit of overkill to use an entire 4-KB block for
these bitmaps; such a bitmap can track whether 32K objects are allocated,
and yet we only have 80 inodes and 56 data blocks. However, we just use
an entire 4-KB block for each of these bitmaps for simplicity.

The careful reader (i.e., the reader who is still awake) may have no-
ticed there is one block left in the design of the on-disk structure of our
very simple file system. We reserve this for the superblock, denoted by
an S in the diagram below. The superblock contains information about
this particular file system, including, for example, how many inodes and
data blocks are in the file system (80 and 56, respectively in this instance),
where the inode table begins (block 3), and so forth. It will likely also
include a magic number of some kind to identify the file system type (in
this case, vsfs).

S
0

i d I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

Thus, when mounting a file system, the operating system will read
the superblock first, to initialize various parameters, and then attach the
volume to the file-system tree. When files within the volume are accessed,
the system will thus know exactly where to look for the needed on-disk
structures.

40.3 File Organization: The Inode

One of the most important on-disk structures of a file system is the
inode; virtually all file systems have a structure similar to this. The name
inode is short for index node, the historical name given to it in UNIX

[RT74] and possibly earlier systems, used because these nodes were orig-
inally arranged in an array, and the array indexed into when accessing a
particular inode.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

(OSTEP Chapter 40)



Simple File System On-Disk Layout

(OSTEP Chapter 40)

FILE SYSTEM IMPLEMENTATION 5

ASIDE: DATA STRUCTURE — THE INODE

The inode is the generic name that is used in many file systems to de-
scribe the structure that holds the metadata for a given file, such as its
length, permissions, and the location of its constituent blocks. The name
goes back at least as far as UNIX (and probably further back to Multics
if not earlier systems); it is short for index node, as the inode number is
used to index into an array of on-disk inodes in order to find the inode
of that number. As we’ll see, design of the inode is one key part of file
system design. Most modern systems have some kind of structure like
this for every file they track, but perhaps call them different things (such
as dnodes, fnodes, etc.).

Each inode is implicitly referred to by a number (called the i-number),
which we’ve earlier called the low-level name of the file. In vsfs (and
other simple file systems), given an i-number, you should directly be able
to calculate where on the disk the corresponding inode is located. For ex-
ample, take the inode table of vsfs as above: 20-KB in size (5 4-KB blocks)
and thus consisting of 80 inodes (assuming each inode is 256 bytes); fur-
ther assume that the inode region starts at 12KB (i.e, the superblock starts
at 0KB, the inode bitmap is at address 4KB, the data bitmap at 8KB, and
thus the inode table comes right after). In vsfs, we thus have the following
layout for the beginning of the file system partition (in closeup view):

Super i-bmap d-bmap

0KB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

The Inode Table (Closeup)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 77 78 79

iblock 0 iblock 1 iblock 2 iblock 3 iblock 4

To read inode number 32, the file system would first calculate the off-
set into the inode region (32 · sizeof(inode) or 8192), add it to the start
address of the inode table on disk (inodeStartAddr = 12KB), and thus
arrive upon the correct byte address of the desired block of inodes: 20KB.
Recall that disks are not byte addressable, but rather consist of a large
number of addressable sectors, usually 512 bytes. Thus, to fetch the block
of inodes that contains inode 32, the file system would issue a read to sec-
tor 20×1024

512
, or 40, to fetch the desired inode block. More generally, the

sector address iaddr of the inode block can be calculated as follows:

blk = (inumber * sizeof(inode_t)) / blockSize;
sector = ((blk * blockSize) + inodeStartAddr) / sectorSize;

Inside each inode is virtually all of the information you need about a
file: its type (e.g., regular file, directory, etc.), its size, the number of blocks

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

Example inode Fields (ext2)
6 FILE SYSTEM IMPLEMENTATION

Size Name What is this inode field for?
2 mode can this file be read/written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file acl a new permissions model beyond mode bits
4 dir acl called access control lists

Figure 40.1: Simplified Ext2 Inode

allocated to it, protection information (such as who owns the file, as well
as who can access it), some time information, including when the file was
created, modified, or last accessed, as well as information about where its
data blocks reside on disk (e.g., pointers of some kind). We refer to all
such information about a file as metadata; in fact, any information inside
the file system that isn’t pure user data is often referred to as such. An
example inode from ext2 [P09] is shown in Figure 40.11.

One of the most important decisions in the design of the inode is how
it refers to where data blocks are. One simple approach would be to
have one or more direct pointers (disk addresses) inside the inode; each
pointer refers to one disk block that belongs to the file. Such an approach
is limited: for example, if you want to have a file that is really big (e.g.,
bigger than the block size multiplied by the number of direct pointers in
the inode), you are out of luck.

The Multi-Level Index

To support bigger files, file system designers have had to introduce dif-
ferent structures within inodes. One common idea is to have a special
pointer known as an indirect pointer. Instead of pointing to a block that
contains user data, it points to a block that contains more pointers, each
of which point to user data. Thus, an inode may have some fixed number
of direct pointers (e.g., 12), and a single indirect pointer. If a file grows
large enough, an indirect block is allocated (from the data-block region of
the disk), and the inode’s slot for an indirect pointer is set to point to it.
Assuming 4-KB blocks and 4-byte disk addresses, that adds another 1024
pointers; the file can grow to be (12 + 1024) · 4K or 4144KB.

1Type info is kept in the directory entry, and thus is not found in the inode itself.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

(OSTEP Chapter 40)



Access Patterns: 
open(“/foo/bar”), read()FILE SYSTEM IMPLEMENTATION 11

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[2]

read
read

open(bar) read
read

read
read

read() read
write
read

read() read
write
read

read() read
write

Figure 40.3: File Read Timeline (Time Increasing Downward)

the file system must be able to find the inode, but all it has right now is
the full pathname. The file system must traverse the pathname and thus
locate the desired inode.

All traversals begin at the root of the file system, in the root directory
which is simply called /. Thus, the first thing the FS will read from disk
is the inode of the root directory. But where is this inode? To find an
inode, we must know its i-number. Usually, we find the i-number of a file
or directory in its parent directory; the root has no parent (by definition).
Thus, the root inode number must be “well known”; the FS must know
what it is when the file system is mounted. In most UNIX file systems,
the root inode number is 2. Thus, to begin the process, the FS reads in the
block that contains inode number 2 (the first inode block).

Once the inode is read in, the FS can look inside of it to find pointers to
data blocks, which contain the contents of the root directory. The FS will
thus use these on-disk pointers to read through the directory, in this case
looking for an entry for foo. By reading in one or more directory data
blocks, it will find the entry for foo; once found, the FS will also have
found the inode number of foo (say it is 44) which it will need next.

The next step is to recursively traverse the pathname until the desired
inode is found. In this example, the FS reads the block containing the
inode of foo and then its directory data, finally finding the inode number
of bar. The final step of open() is to read bar’s inode into memory; the
FS then does a final permissions check, allocates a file descriptor for this
process in the per-process open-file table, and returns it to the user.

Once open, the program can then issue a read() system call to read
from the file. The first read (at offset 0 unless lseek() has been called)
will thus read in the first block of the file, consulting the inode to find
the location of such a block; it may also update the inode with a new last-
accessed time. The read will further update the in-memory open file table
for this file descriptor, updating the file offset such that the next read will
read the second file block, etc.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

Access Patterns: 
Creating a FileFILE SYSTEM IMPLEMENTATION 13

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[2]

read
read

read
read

create read
(/foo/bar) write

write
read
write

write
read

read
write() write

write
write
read

read
write() write

write
write
read

read
write() write

write
write

Figure 40.4: File Creation Timeline (Time Increasing Downward)

the directory containing the new file. The total amount of I/O traffic to
do so is quite high: one read to the inode bitmap (to find a free inode),
one write to the inode bitmap (to mark it allocated), one write to the new
inode itself (to initialize it), one to the data of the directory (to link the
high-level name of the file to its inode number), and one read and write
to the directory inode to update it. If the directory needs to grow to ac-
commodate the new entry, additional I/Os (i.e., to the data bitmap, and
the new directory block) will be needed too. All that just to create a file!

Let’s look at a specific example, where the file /foo/bar is created,
and three blocks are written to it. Figure 40.4 shows what happens during
the open() (which creates the file) and during each of three 4KB writes.

In the figure, reads and writes to the disk are grouped under which
system call caused them to occur, and the rough ordering they might take
place in goes from top to bottom of the figure. You can see how much
work it is to create the file: 10 I/Os in this case, to walk the pathname
and then finally create the file. You can also see that each allocating write
costs 5 I/Os: a pair to read and update the inode, another pair to read
and update the data bitmap, and then finally the write of the data itself.
How can a file system accomplish any of this with reasonable efficiency?

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES



VFS Handout
(sync up at end)

Course Logistics: Up Next

• Lab 2 (Hello, FUSE!) 

• Fill out partner survey (linked on course “labs” 
page) 

• Tom will help to answer questions during lab 

• I’ll be gone next Monday afternoon until Sunday 
(FAST conference)


