RAID: (Redundant?) Arrays
of Inexpensive Disks

CSCI 333

1. The ideas used by RAID are “big ideas” In
systems

» Striping

* Replication

 Parity

2. Fault tolerance is important in practice
« We must first define a model for how things can fail
* Then we can design systems to overcome those failures

Do not spend your time memorizing RAID levels

* Instead, think about the “big ideas” and their tradeoffs
» When would you stripe writes”? When is striping not worth the work?
» Should you use replication or parity”? How many replicates do you need?

Think about each idea in terms of:
* Performance
» Capacity
 Fault tolerance

Think about how to apply the ideas elsewhere:

« Modern systems comprise many abstract layers. Where can
you apply these ideas, and where does abstraction get in
the way?

Erasure coding
Crash recovery/consistency
“Byzantine” fault tolerance

Deduplication (perhaps the inverse of replication...)

RAID: (Redundant?) Arrays
of Inexpensive Disks

CSCI 333

Redundant Arrays of Inexpensive Disks

* Three “techniques”
» Striping
» Mirroring
» Parity

* Three evaluation criteria
» Performance
» Reliability
» Capacity

* Failure Model
» Fail-stop

« RAID Levels

~ Lecture Overview

RAID from the user’s

— — = > = e e ———————

Hardware RAID is ranspareznt to the user

» An array of disks are connected to the computer, and all the
computer sees is a single logical disk

* Nothing about the RAID setup is externally visible: it’s just a
single LBA space that appears and acts as one device

Why masquerade a set of N>1 disks as a single
volume of storage? What types of things might we
want to improve?

» Capacity
» we may just want to store more data than fits on a single disk, but not
change our software to manage multiple physical devices

- Performance (parallelism and/or choice)

» a single disk has one disk arm, so it can read from one location at a
time. N disks have N disk arms. We can parallelize some operations

* Recovery
p if all of our data is on a single disk, we are extremely vulnerable to any
disk failures
» if our data is on N disks, we may not lose everything if we lose 1 disk

Suppose we have an array of 2 disks, each capable
of storing L logical blocks.

» Let’s partition the LBAs as follows:

0—(L-1) L—(@2L-1)

» What is the capacity?
« What is the performance?
- How many disk failures can we survive?

Suppose we have an array of 2 disks, each capable
of storing L logical blocks.

 Let’s partition the LBAs as follows:

0,2,4,...,(2L-2) 1,3,5,...,(2L-1)

- What is the capacity?
« What is the performance?
* How many dj '

Striping adds parallelism

to sequential writes

How to best “stripe” the data?
* Previous slide has chunk size of 1

- What are the tradeoffs of increasing the chunk size (the
number of consecutive LBAs per disk in a stripe)?

Chunk size affects parallelism:

» With a small chunk size, it is more likely that a write will be
striped across many disks, increasing parallelism

» With a large chunk size, some writes may directed to fewer
disks

» The system can still get parallelism from making multiple independent
requests

In addition to performance, we may use extra disks
to increase the reliability of our storage

» Disks falil for a variety of reasons

- We want to be able to undergo one (or more) disk failures
without losing data

« |f possible, we also want to preserve/improve performance

RAID assumes disks are fail-stop
- |f there is an error, we can detect the error immediately

« Assume a simple state machine: either the entire disk
works, or the entire disk has failed

Not

Working working

What other classes of errors could possibly exist?

 Failures can be transient
» €.g., a temporary error that fixes itself

* Failures can be unreliable
» €.9., sometimes an error is returned, sometimes the correct answer

» Failures can be partial
» €.9., a single sector or range of sectors become unusable

Disk losses may be correlated
* |f your power supply goes, it may take all disks with it
 Flood/fire?
* Theft?

RAID doesn’t attempt to

handle these errors

Suppose we have an array of 2 disks, each capable
of storing L logical blocks.

» Let’s partition the LBAs as follows:

0—(L-1) 0—(L-1

N

» What is the capacity?
« What is the performance?
- How many disk errors can we survive?

Rule: Count the number of 1s, and

» If the number of 1s is odd, the parity bit is 1
» If the number of 1s is even, the parity bit is O

To extend the idea to disk blocks:

» bitwise XOR the ith bit of each block; result is the ith bit of the parity block

Example:

XO
XO
XO
XO
XO
XO
XO
XO

[
O 4 4 0000 —

_Redundan _

Suppose we have an array of 3 disks, each capable
of storing L logical blocks.

 Let’s partition the LBAs as follows: .

w
o
N
-
e
U
o
U
—h
T
-
—

0,2,4,...,(2L-2) 1
« What is the capacity?
« What is the performance?
- How many disk errors can we survive?

You can combine some RAID levels in fun ways
RAID 10 vs. RAID 01

Stripe Mirror
| | | |
Mirror Mirror Stripe Stripe
| | | | | | |
| | 2 2 | 2 | 2
3 3 4 4 3 4 3 4

_Other Considerations

You can combine some RAID ideas in fun ways

RAID 4 vs. RAID 5

I 2 3 PO
4 5 6 Pl
7/ 8 9 P2
10 |l 12 P3

I 2 3 PO
4 5 Pl 6
7 P2 8 9
P3 |10 |l 12

It is a relatively straightforward concept, but
practical and very useful

The ideas can be applied to distributed storage and
other environments (e.g., think of “nodes” as disks)

| felt bad letting you leave without knowing about
RAID; I’ve seen it as an interview question

» But most of the concepts can be reasoned about on the fly

» You should remember mirroring, striping, and parity, not Level O,
Level 1, Level 4, Level 5.

» (Remind your interviewers that you are there to think not to memorize)

« Other levels are less common, but common sense. Explore!

