
NFS is a protocol developed by Sun Microsystems. NFS uses the client-server model, where one powerful
server is accessed by potentially many clients. This model has several advantages, but also presents
interesting implementation challenges. When thinking about NFS, it is important to remember that, at the time,
"the cloud" was not the omnipresent force that it is today; most data only ever lived on local storage devices.

The motivating use case for NFS is more or less a mid-sized office building (not exactly inspiring, but it was an
incredibly important use case). That being said, you can easily map the NFS "target environment" to our
computer science department's lab:

Many individuals would like to be able to move around among many machines and have their data move
with them
It should be easy for an administrator to perform important tasks (e.g., add/delete users (students enroll
and graduate every year), add storage capacity to the system to accommodate demand, create backups,
etc.)
Each user is typically working from one machine at a time
Machines are (in general) reliably connected to the network

Although NFS is less exciting than it once was, it was an incredibly important step forward. We will reference
NFS design points in many of our later discussions this semester, even if just as an example of what not to do.

Be able to describe how and why statelessness is used in the NFSv2 design
Be able to describe idempotent operations and how NFSv2 uses idempotency to simplify recovery/design
Be able to illustrate the client/server model and a typical NFS configuration
Be able to describe how an application's FS system calls are translated into NFS network messages
Be able to describe how NFS uses client-side caching to improve application performance
Be able to describe how NFS uses server-side caching and its limitations

NFS is an open protocol designed by SUN, essentially to create a market for SUN to sell powerful storage
servers. There are many benefits to the client/server model.

simplified the system administration efforts
things like backup, encryption, data management, etc. can all be done on a single server rather than at
each client machine

a user can interact with their data from any number of workstations, and receive the same
experience/guarantees

In addition to the model itself, NFSv2 was developed around some interesting design principles. It was an
influential model that continues to be used to this day (albeit with a slightly evolved design).

Network File System (NFS)

Learning Objectives

The client-server model



Clients that use NFS operate as if they were using a local file system. Under normal operation, the fact that
client machines are communicating over a network is transparent: clients are presented with the illusion of a
local file system.

Applications issue system calls on their local machine
The NFS client converts those system calls into a series of network requests to the server
The server responds to each request, possibly by reading the user's data from its central store
The NFS client parses relevant data from those responses, and applies those results to the client's view of
their data

Since the server is the single most important machine in the protocol (many clients connect to the server, and if
the server goes down, the clients are largely unusable), the NFS design prioritizes simple and efficient server
recovery. Two design elements that I find particularly elegant are that

NFS v2 is a stateless protocol: all information necessary to complete a given operation is provided as part
of the request (i.e., the server does not need to keep any context to understand what the client is
requesting, the client always provides that context)
(most) NFS operations are idempotent: operations can be executed repeatedly with the same effect. In this
way, if a server crashes, a client can simply repeat an operation without wondering whether or not it was
successfully applied by the server. In either case, the desired outcome will be the achieved after the
idempotent operation completes.

File Handles. To make NFS a stateless protocol, clients package their context into an NFS file handle. File
handles contain a volume ID, an inode number, and a generation number.

the volume ID tells the server which of the (possibly many) data volumes the request is targeting (e.g., an
NFS server might have separate student volumes and instructor volumes to simplify the management of
student files that are cleaned every 4 years and instructor files which persist until retirement)
the inode number identifies a file system object within a volume (e.g., /faculty/bill/cs333exam.txt might
have inode number 73)
the generation number is useful because inode numbers are reused. Suppose a file is deleted, and then a
new file is created. It is possible that the new file recycles the deleted file's inode number. If a client tries to
access the deleted file using only the deleted file's inode number, the client would receive surprising data
without any indication of an error.

The file handle is an essential part of almost every NFS protocol message.

Client side caching. NFS clients are separated from the server by a network. The latency of accessing a
remote machine over a network is higher than the latency of accessing a local device. Since many file system
operations are translated into multiple messages, each of which must cross the network in a round trip, NFS
clients cache data when possible. At a high level:

How the model works

NFS Design Goals

NFS implementation



Reads are cached locally; future requests for the same data can be satisfied from the cache.
Writes are buffered in memory (as they are in most local file systems), and updates are written to the server
when explicitly demanded or convenient

This caching introduces a challenge: consistency. Multiple clients can open the same file. If they each cache
parts of their data locally, their view of a given file's contents can become out of sync in the presence of
updates.

NFS implements close-to-open consistency. This does not provide very strong guarantees about how fast
updates are propagated, but it does give a model that clients can reason about: when a client closes a file,
a future open of the same file will see the latest version.
NFS uses  GETATTR  requests to check the validity of its cache. The result indicates whether or not the
server has a more recent version of the file than the cached version.

Since  GETATTR  requests also require a round trip, clients often issue  GETATTR  requests every N
seconds; this bounds the staleness, but introduces a window of vulnerability.

Server side caching. NFS servers must persist data, but they may also want to buffer updates for performance
reasons.

NFS servers cannot acknowledge a write until it has been made persistent.
Companies like NetAPP made their money by adding battery-backed memory so they could acknowledge
writes quickly. They also use a variant of a log-structured file system to optimize for write performance.

The NFS protocol has had several iterations. The textbook focuses on NFSv2 and omits discussion of NFSv3
and NFSv4. The later versions implement some optimizations to minimize the number of "round trips" between
the client and server for common, and to improve client performance by rolling back some of the design
principles of v2. To summarize:

Some state is introduced
Compounds let you bundle multiple operations into a message, rather than waiting for responses before
sending the next message

Questions:

1. How do idempotent operations simplify the design of how clients respond to server
crashes/disconnections and recovery?

2. How does statelessness simplify NFS design (e.g., what are some challenges that would be added to the
server if it needed to maintain state)?

3. How might removing statelessness improve NFS performance?
4. What are some alternatives to close-to-open consistency? What would be the costs of implementing those

alternatives in NFS?

Future Versions


