
Networked File System 
CS333 S20 :: Williams College

Course Logistics

Lab 3a 
• Teams, repos, panics, due date


24-hour take-home midterm 
• Will be in envelopes in my mailbox



Last Class

LFS 
• No-overwrite file system

• LFSes work hard to optimize writes by avoiding seeks 

‣Rely on caching to avoid I/O costs for fragmented data during reads 

• Has some not-so-unlikely worst cases

‣Sequential-read-after-random-write 
‣Full-disk behavior? High segment cleaning overheads… 

• Garbage collection

‣Hard to evaluate the cost of garbage collection because workload 

dependent 
‣ Introduces I/O amplification: system I/O greatly exceeds user I/O

This Class

NFS: Network File System 
• Discussion

• Handout


FUSE FS 
• Define data structures

• Discuss utility methods

• structs, unions, void *, typedefs, etc.


If extra time: 
• Activity (NFS trace analysis)



Evolving Protocol

NFS has evolved over many years: 
• NFS v1: internal SUN protocol

• NFS v2: 1989

• NFS v3: 1995

• NFS v4: 2000

• NFS v4.1: 2010

• NFS v4.2: 2016


What’s changed? 
• Statelessness has given way to statefulness in NFSv4

‣The “purity” of the v2 design has eroded in favor of performance & 

security

Concepts/Questions

Statelessness vs. statefulness? 

What is idempotency and why are idempotent 
operations desirable? 

Who caches what, and what are the implications? 

What consistency guarantees does NFS give to 
clients? 

What happens when an NFS client crashes? An 
NFS server?



NFS v2: High-level idea

Clients provide all state with their requests 
• File handle: volume number, inode number, generation 

number


Local VFS operations translated into a series of 
network requests 

The fact that NFS uses the client-server model is 
transparent to applications

NFS Big Picture

VFS

NFS 
client

Local

FSes

RPC 
client stub

VFS

NFS 
server

Local

FSes

RPC 
server stub

Local Application



NFS Big Picture: Client

/

home/ usr/bin/ var/

jannen/

www/ cs333/

lectures/ exams/index.html

courses/

cs134/ cs432/

/dev/sda1 on /

nfs on /courses/

nfs on /home/jannen/

Clients mount nfs volumes into their FS namespace

NFS Big Picture: Server

/

faculty/

jannen/

www/ cs333/

lectures/ exams/index.html

courses/

cs134/ cs432/

/dev/sda1 on /

/dev/sda2 on /courses/

NFS servers export subtrees to clients.

/etc/exports contains nfs server settings:


• /faculty/jannen exported RW to userid:jannen on 
dexter.cs.williams.edu, speckle.cs.williams.edu, …


• /courses/exported RW to userid:jannen on 
dexter.cs.williams.edu, speckle.cs.williams.edu, …


• /students/09mci3/exported RW to userid:09mci3 on 
dexter.cs.williams.edu, speckle.cs.williams.edu, …

/dev/sda3 on /courses/

/dev/sda4 on /students/

students/

09wkj1/ 09mci3/ …/



NFSv2 Statelessness

POSIX is stateful, NFSv2 is not 
• What challenges does this bring? 

An NFSv2 server has no notion of a “connection” 
• The client bundles all necessary “state” into each message

‣NFS file handle stores volume, inode #, generation # 

• The server can then view each client message in isolation

‣ If a client disconnects, the server does not know or care 
‣ If the server crashes, the client does not lose any relied-upon state

NFSv2 Statelessness

Idempotent operations 
• An operation is idempotent if performing the operation 

multiple times has the same effect as performing it once

‣Many POSIX system calls are not idempotent: 
‣ read(fd, buf, nbytes), write(fd, buf, nbytes), lseek(fd, offset, whence), etc. 
‣By specifying the starting offset with each read/write, many operations 

can be made idempotent 
‣ Notable exceptions? 

Idempotency simplifies the protocol considerably 
• If a message is dropped, send it again

• If the server crashes, clients can resend all 

unacknowledged operations



Caching: Who and What?

Network round trips are expensive, so clients would 
like to cache data locally 
• Satisfy reads from cache, rather than pay for read+RTT

• Buffer writes locally, and send updates in large messages


Multiple clients can’t share data effectively without 
coordination 
• NFSv2 is supposed to appear as a local FS

• When is local cache stale w.r.t. server?

• When should you push your updates to server?


NFSv2 solutions: 
• Flush-on-close / close-to-open consistency

• Attribute cache

Close-to-open Consistency

TimeF F’

F

F’’

F’

F F’’

Client A

Client B

1.) Client A makes changes to F 
and saves them to the server

2.) Client B makes changes to F 
and saves them to the server



Tying to Previous Topics
OSTEP 1.00 section 49.11, final paragraph: 

The problem that this requirement gives rise to in NFS server implementation is that 
write performance, without great care, can be the major performance bottleneck. 
Indeed, some companies (e.g., Network Appliance) came into existence with the 
simple objective of building an NFS server that can perform writes quickly; one trick 
they use is to first put writes in a battery-backed memory, thus enabling to quickly 
reply to WRITE requests without fear of losing the data and without the cost of having 
to write to disk right away; the second trick is to use a file system design specifically 
designed to write to disk quickly when one finally needs to do so [HLM94, RO91].

• NetApp Filers used WAFL: a log-structured “file system”!


Activity: NFS Trace Analysis

https://github.com/williams-cs/cs333-class



Activity: FUSE FS Design

What are the important structures?
What are the important utilities?
What is a good implementation plan?


