Log-Structured Merge Trees

CSCI 333
How Should I Organize My Stuff (Data)?
How Should I Organize My Data?

Different people approach the problem differently…

[https://pbfcomics.com/comics/game-boy/]
How Should I Organize My Data?

Logging

Indexing
How Should I Organize My Data?

<table>
<thead>
<tr>
<th>Logging</th>
<th>Indexing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inserting</td>
<td></td>
</tr>
<tr>
<td>Append at end of log</td>
<td>Insert at leaf</td>
</tr>
<tr>
<td></td>
<td>(traverse root-to-leaf path)</td>
</tr>
<tr>
<td>Searching</td>
<td></td>
</tr>
<tr>
<td>Scan through entire log</td>
<td>Locate in leaf</td>
</tr>
<tr>
<td></td>
<td>(traverse root-to-leaf path)</td>
</tr>
</tbody>
</table>
How Should I Organize My Data?

Logging

Inserting: $O(1/B)$

Searching: $O(N/B)$

Indexing

Assuming B-tree

Inserting: $O(\log_B N)$

Searching: $O(\log_B N)$
Are We Forced to Choose?

It appears we have a tradeoff between insertion and searching

• B-trees have
 ‣ fast searches: $O(\log B N)$ is the optimal search cost
 ‣ slow inserts

• Logging has
 ‣ fast insertions
 ‣ slow searches: cannot get worse than exhaustive scan
B-tree searches are optimal

B-tree updates are not

- We want a data structure with inserts that beat B-tree inserts without sacrificing on queries

> This is the promise of *write-optimization*
Data structure proposed by O’Neil, Cheng, and Gawlick in 1996
- Uses write-optimized techniques to significantly speed up inserts

Hundreds of papers on LSM-trees (both innovating and using)

To get some intuition for the data structure, let's break it down

Log-structured • Merge • Tree
Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of temporal ordering
Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of temporal ordering

Merge

• As data evolves, sequentially written runs of key-value pairs are merged
 ▸ Runs of data are indexed for efficient lookup
 ▸ Merges happen only after much new data is accumulated
Log-Structured Merge Trees

Log-structured

• All data is written sequentially, regardless of temporal ordering

Merge

• As data evolves, sequentially written runs of key-value pairs are merged
 ▸ Runs of data are indexed for efficient lookup
 ▸ Merges happen only after much new data is accumulated

Tree

• The hierarchy of key-value pair runs form a tree
 ▸ Searches start at the root, progress downwards
Log-Structured Merge Trees

Start with [O’Neil 96], then describe LevelDB

We will discuss:

- Compaction strategies
- Notable “tweaks” to the data structure
- Commonly cited drawbacks
- Potential applications
An LSM-tree comprises a hierarchy of trees of increasing size

- *All* data inserted into in-memory tree \((C_0)\)
- Larger on disk trees \((C_{i>0})\) hold data that does not fit into memory

Figure 2.1. Schematic picture of an LSM-tree of two components
When a tree exceeds its size limit, its data is merged and rewritten

- Higher level is always merged into next lower level (C_i merged with C_{i+1})
 - Merging always proceeds top down

[O’Neil, Cheng, Gawlick ’96]

Figure 3.1. An LSM-tree of $K+1$ components
Recall mergesort from data structures
- We can efficiently merge two sorted structures
- When merging two levels, newer version key-value pair replaces older (GC)
 - LSM-tree invariant: newest version of any key-value pair is version nearest to top of LSM-tree

Figure 2.2. Conceptual picture of rolling merge steps, with result written back to disk
Maintain a set of key-value pairs (kv pairs)

- Support the dictionary interface
 - `insert(k, v)` - insert a new kv pair, (possibly) replacing old value
 - `delete(k)` - remove all values associated with key `k`
 - `(k, v) = query(k)` - return latest value `v` associated with key `k`
 - `{(k₁, v₁), (k₂, v₂), ..., (kᵢ, vᵢ)} = query(kᵢ, k_l)` - return all key-value pairs in the range from `kᵢ` to `k_l`

> **Question**: How do we implement each of these operations?
We insert the key-value pair into the in-memory level, C_0

- Don’t care about lower levels, as long as newest version is one closest to top
- But if an old version of kv-pair exists in the top level, we must replace it
- If C_0 exceeds its size limit, compact (merge)

> Inserts are fast! Only touch C_0.
We insert a **tombstone** into the in-memory level, C_0

- A tombstone is a “logical delete” of all key-value pairs with key k
 - When we merge a tombstone with a key-value pair, we delete the key-value pair
 - When we merge a tombstone with a tombstone, just keep one
 - When can we delete a tombstone?
 - At the lowest level
 - When merging a *newer* key-value pair with key k

> **Deletes are fast! Only touch C_0.**
Begin our search in the in-memory level, C_0

- Continue until:
 - We find a key-value pair with key k
 - We find a tombstone with key k
 - We reach the lowest level and fail-to-find

> Searches traverse (worst case) every level in the LSM-tree
We must search every level, $C_0...C_n$

- Return all keys in range, taking care to:
 - Return newest (k_i, v_i) where $k_j < k_i < k_l$ such that there are no tombstones with key k_i that are newer than (k_i, v_i)

> Range queries must scan every level in the LSM-tree (although not all ranges in every level)
LevelDB

Google’s Open Source *LSM-tree-ish* KV-store
LevelDB consists of a hierarchy of **SSTables**

- An SSTable is a sorted set of key-value pairs (Sorted Strings Table)
 - Typical SSTable size is 2MiB

The growth factor describes how the size of each level scales

- Let F be the growth factor (fanout)
- Let M be the size of the first level (e.g., 10MiB)
- Then the i^{th} level, C_i has size $F^i M$

The spine stores metadata about each level

- $\{\text{key}_i, \text{offset}_i\}$ for all SSTables in a level (plus other metadata TBD)
- Spine cached for fast searches of a given level
 - (if too big, a B-tree can be used to hold the spine for optimal searches)
LevelDB Example

- L_0: 8 MiB
- L_1: 10 MiB
- L_2: 100 MiB
- L_6: 1 TiB

Operation Log

In-memory SSTable

In-memory SSTable

(k_1,v_1)
In-memory SSTable

Operation Log

Disk

Memory

LevelDB Example

1. Write operation to log (immediate persistence)
2. Update in-memory SSTable
3. (Eventually) promote full SSTable and initialize new empty SSTable
4. Merge/write in-memory SSTables to L0

L0: 8 MiB
L1: 10 MiB
L2: 100 MiB
L6: 1 TiB
How do we manage the levels of our LSM?

- **Ideal data management strategy would:**
 - Write all data sequentially for fast inserts
 - Keep all data sorted for fast searches
 - Minimize the number of levels we must search per query (low read amplification)
 - Minimize the number of times we write each key-value pair (low write amplification)

- **Good luck making that work!**
 - … but let's talk about some common approaches
Option 1: Size-tiered

- Each “tier” is a collection SSTables with similar sizes
- When we compact, we merge some number of SSTables with the same size to create an SSTable in the next tier
Option 2: Level-tiered

- All SSTables are fixed size
- Each level is a collection SSTables with non-overlapping key ranges
- To compact, pick SSTable(s) from \(L_i\) and merge them with SSTables in \(L_{i+1}\)
 - Rewrite merged SSTables into \(L_{i+1}\) (redistributing key ranges if necessary)
 - Possibly continue (cascading merge) of \(L_{i+1}\) to \(L_{i+2}\)
 - Several ways to choose (e.g., round-robin or ChooseBest)
 - Possibly add invariants to our LSM to control merging (e.g., an SSTable at \(L_{i+1}\) can cover at most \(X\) SSTables at \(L_{i+1}\))

Merge SSTable in \(L_i\) with all SSTables in \(L_{i+1}\) that have overlapping key ranges, possibly redistributing key ranges among newly written SSTables.
We write a lot of data during compaction

- Not all data is new
 - We may rewrite a key-value pair to the same level multiple times
- How might we save extra writes?
 - VT-trees \cite{Shetty FAST '13}: if a long run of kv-pairs would be rewritten unchanged to the next level, instead write a pointer

- Problems with VT-trees?
 - Fragmentation
 - Scanning a level might mean jumping up and down the tree, following pointers

> There is a tension between locality and rewriting
We write a lot of data during compaction

- Not all data is new
 - We may rewrite a key-value pair to the same level multiple times

- How might we save extra writes?
 - Fragmented LSM-Tree [Raju SOSP ’17]: each level can contain up to F fragments
 - Fragments can be appended to a level without merging with SSTables in that level
 - Saves the work of doing a “merge” until there is enough work to justify the I/Os

- Problems with fragments?
 - Fragments can have overlapping key ranges, so may need to search through multiple fragments
 - Need to be careful about returning newest values

> Again, we see a tension between locality and rewriting
We write a lot of data during compaction

- Work “builds up”, and small writes might trigger a lot of I/O for this pent-up work
 - We often care about **tail latency** in real systems (the latency of the worst N% of operations)
 - We often care about performance predictability

> Amortization is great for throughput, but burstiness harms individual operations
LSM-tree Problems?

We read a lot of data during searches

- We may need to search every level of our LSM-tree
 - Binary search helps (SSTables are sorted), but still many I/Os to check all relevant SSTables in all levels

- How might we save extra reads?
 - Bloom filters!
 - By adding a Bloom filter, we only search if the data exists in that level (or false positive)
 - Bloom filters for large data sets can fit into memory, so approximately $1+e$ I/Os per query
 - Recent work dynamically “reallocates” bits to minimize false positives for a given memory budget

- Problems with Bloom filters?
 - Do they help with range queries?
 - Not really…
How might you design:
• an LSM-tree for an SSD?
• an LSM-tree for an SMR drive?
 ‣ how would your designs be different?
 ▶ Scale (SSD blocks are much smaller than SMR zones)
 ▶ Different concerns (e.g., wear leveling & endurance, parallelism)

We talked about storing the data with your index, or separating your data from your index (clustered vs. declustered index)
• How might you design a system that separates keys from values?
 ▶ Wisckey [Lu FAST 16]: Store keys in LSM-tree, values in a log
• What are the advantages/disadvantages?
 ▶ Can fit most of the LSM-tree (keys) in memory -> 1 I/O per search
 ▶ Need to GC your value log, just like LFS