
Hard Disk Drives
CS333

Spring 2020

Logistics

• Lab 1: Unix utilities, system calls, & C

• Due Thursday

• Anyone stuck?

• Questions about C/system calls?

• `man 2 read`

Last Class
• I/O Devices

• Physical Interfaces

• Device Drivers vs. Firmware

• Polling vs. Interrupts

• Big Picture: Memory Hierarchy / Layers

This Class
• HDD Guarantees

• Performance & correctness

• Physical components and Geometry

• Breaking down an I/O

• The role of caching

• Scheduling requests

Hard Disk Drives (HDDs)

• High capacity, low cost

• Predictable performance

• “Unwritten contract”: Tracks (LBAs) near each other
are more efficient to access than tracks (LBAs) that
are far away

HDDs

Disk Head
(seeks in/out)

Platters
(rotate)

HDDs

Disk Head
(seeks in/out)

Platters
(rotate)

Tracks
(concentric circles)

HDDs

Disk Head
(seeks in/out)

Platters
(rotate)

Tracks
(concentric circles)

Sector
(unit of transfer)

“Unwind” The Tracks

Seeking through the Linear Address
Space

HDDs

HDDs

• Disks are addressed by LBA: [0-MAXLBA)

• Transfer data in fixed-size units: “disk block”

• “block interface” used for both reads and writes

0 MAXLBA

Breaking Down an I/O

0 MAXLBA

• Two costs to every operation:

• Setup: Moving the disk head, rotating the platters

• Transfer: Reading/writing while the disk rotates

Ex: data <- read(10024, 10048)

Performance Observations

• Setup (placing the disk head) is expensive O(10 ms)

• seeking to target track

• Up to a full rotational delay to locate sector

• Once the disk head is in place, data transfer is
quite fast O(100 MiB/s)

2
13

2
16

2
19

2
22

2
25

2
28

2
�2

2
0

2
2

2
4

2
6

Read size (bytes)

E
ff

e
c
ti

v
e

B
a
n
d

w
id

th
(
M

B
/s

e
c
)

HDD

To maximize performance, minimize seeks and
maximize the ratio of time spent transferring.

Why Does This
Matter?

HDD

File System

Application user space

OS kernel

Simplified Storage Stack

data = read(LBA),
write(data,LBA)

Good Cases

Sequential I/O
• Write a large file to an empty

file system.

• Read an existing file in order

0

40

80

120

*higher is better

M
B/

s ext4
raw disk

Sequential I/O

Good Cases

• Write a large file to an
empty file system.

Good Cases

• Read an existing file in
order

Bad Cases

Random I/O
• Randomly update an existing

file

• Randomly reading an existing
file

• Reading data from many
independent files

0

40

80

120

*higher is better

M
B/

s ext4
raw disk

Random Overwrites

Bad Cases

• Randomly update an
existing file

Takeaway:
Locality Matters

Disk Geometry

• High level idea gets us most of the way, but disk
geometry adds complications (opportunities?)

• Multi-zoned disks

• Track Skew

Takeaway:
Sometimes it pays to “open the black
box”. Abstractions are important, but

they hide important details.

Scheduling

• High Level Question: You are given a series of
requests that must be completed (LBAs), what
order do you perform the work?

• Obstacles?

• Who does the scheduling?

HDD

File System

Application

read(LBA),
write(blk,LBA)

Scheduling

• Greedy: Shortest job first

• Shortest-seek-time-first (SSTF)

• Nearest-block-first (NBF)

• Problems?

• Starvation: one (or more) requests never receive
access to the resources they need to complete

Scheduling

• Elevator!

Any Questions?

HDD Handout
(15-20 minutes)

Activity: HDD Modeling
https://github.com/williams-cs/cs333-class

