
Filters (Bloom & Quotient)

CSCI 333

Operations

• Filters approximately represent sets. Therefore, a
filter must support:
• Insertions: insert(key)
• Queries: lookup(key)

• Filters may also support other operations:
• Deletion: remove(key)
• Union: merge(filtera, filterb)

Why Filters?

• By embracing approximation, filters can be memory
efficient data structures
• Some false positives are allowed
• But false negatives are never allowed

• Many applications are OK with this behavior
• Typically used in applications where a wrong answer just

wastes work, does not harm correctness
• Save expensive work (I/O) most of the time

Bloom Filters

Goal: approximately represent a set of n elements
using a bit array
• Returns either:

• Definitely NOT in the set
• Possibly in the set

Parameters: m, k
• m: Number of bits in the array
• k: Set of k hash functions { h1, h2, …, hk }, each with

range {0…m-1}

Concrete Example: k=3, m=10

h1 ()

h2 ()

h3 ()

0 0 0 0 0 0 0 0 0 0M =

INSERT()

Concrete Example: k=3, m=10

h1 ()

h2 ()

h3 ()

0 1 0 0 1 0 0 0 0 1M =

INSERT()

Set:

Concrete Example: k=3, m=10

h1 ()

h2 ()

h3 ()

0 1 0 0 1 0 0 0 0 1M =

INSERT()

Set:

Concrete Example: k=3, m=10

h1 ()

h2 ()

h3 ()

0 1 0 1 1 0 0 1 0 1M =

INSERT()

Set:

Note: bit was
already set

Concrete Example: k=3, m=10

h1 ()

h2 ()

h3 ()

0 1 0 1 1 0 0 1 0 1M =

LOOKUP()

Set:

All k bits are 1:
return
“possibly in set”

Concrete Example: k=3, m=10

h1 ()

h2 ()

h3 ()

0 1 0 1 1 0 0 1 0 1M =

LOOKUP()

Set:

Not all k bits are 1:
return
“definitely NOT in set”

Concrete Example: k=3, m=10

h1 ()

h2 ()

h3 ()

0 1 0 1 1 0 0 1 0 1M =

LOOKUP()

Set:

All k bits are 1:
return
“possibly in set”

False Positive!

Tuning False Positives

• What happens if we increase m?
• What happens if we increase k?

• False positive rate f is:

P(a given bit is still 0) after n insertions with k hash functions

Bloom Filters

• Are there any problems with Bloom filters?
• What operations do they support/not support?
• How do you grow a Bloom filter?
• What if your filter itself exceeds RAM (how bad is

locality)?
• What does the cache behavior look like?

Quotient Filters

• Based on a technique from a homework question in
Donald Knuth’s “The Art of Computer
Programming: Sorting and Searching, volume 3”
(Section 6.4, exercise 13)
• Quotienting Idea:

Hash: 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1

Quotient Filters

• Based on a technique from a homework question in
Donald Knuth’s “The Art of Computer
Programming: Sorting and Searching, volume 3”
(Section 6.4, exercise 13)
• Quotienting Idea:

Hash: 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1

Quotient: q most significant bits Remainder: r least significant bits

Remaining bits are discarded/lost

Building a Quotient Filter
• The quotient is used as an index into an m-bucket array, where the

remainder is stored.
• Essentially, a hashtable that stores a remainder as the value
• The quotient is implicitly stored because it is the bucket index

• Collisions are resolved using linear probing and 3 extra bits per bucket
• is_occupied: whether a slot is the canonical slot for some value

currently stored in the filter
• is_continuation: whether a slot holds a remainder that is part of a

run (but not the first element in the run)
• is_shifted: whether a slot holds a remainder that is not in its canonical

slot

• A canonical slot is an element’s “home bucket”, i.e., where it belongs
in the absence of collisions.

Quotient Filter Example

Hash table
with external

chaining

Hash table
with linear
probing +

bits

Table of
objects with
quotients/
remainders

for reference

[https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash]

Quotient Filter Example

[https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash]

Quotient Filter Example

Quotient Filter Example

is_occupied is_shifted

is_continuation

402 did not collide with any elements,
but it was shifted from its canonical slot
by 609 and 859.

859 collided with 609, so 859 is both
shifted and part of a run. 402 would
live here, so this bucket is occupied

Collision, but 609 is in it’s canonical slot,
so is_occupied is set

Quotient Filter Concept-check

• What are the possible reasons for a collision?
• Which collisions are treated as “false positives”

• What parameters does the QF give the user? In
other words:
• What knobs can you turn to control the size of the filter?
• What knobs can you turn to control the false positive

rate of the filter?

Quotient Filter Concept-check

• What are the possible reasons for a collision?
• Collisions in the hashtable

• Same quotient, but different remainders cause shifting
• Collisions in the hashspace

• Different keys may produce identical quotients/remainders
• If a hash function collision -> not the QF’s fault
• If due to dropped bits during “quotienting” -> that is the QF’s fault

• Which collisions are treated as “false positives”
• Collisions in the hash space

• What parameters does the QF give the user? In other
words:
• What knobs can you turn to control the size of the filter?
• What knobs can you turn to control the false positive rate of the

filter?
• Quotient bits (number of buckets)
• Remainder bits (how many unique bits per element to store)

Why QF over BF?

• Supports deletes
• Supports “merges”
• Good cache locality

• How many locations accessed per operation?
• Some math can show that runs/clusters are expected to be

small

• Don’t Thrash, How to Cache Your Hash on Flash also
introduces the Cascade filter, a write-optimized filter
made up of increasingly large QFs that spill over to disk.
• Similar idea to Log-structured merge trees, which we will

discuss soon!

Cascade Filter

[https://www.usenix.org/conference/hotstorage11/dont-thrash-how-cache-your-hash-flash]

