Filters (Bloom & Quotient)

CSCI 333

Operations

* Filters approximately represent sets. Therefore, a
filter must support:

* Insertions: insert (key)
* Queries: lookup(key)

* Filters may also support other operations:
* Deletion: remove (key)
* Union:merge(filter_,, filter,)

Why Filters?

* By embracing approximation, filters can be memory
efficient data structures
* Some false positives are allowed
* But false negatives are never allowed

* Many applications are OK with this behavior

* Typically used in applications where a wrong answer just
wastes work, does not harm correctness

» Save expensive work (I/O) most of the time

Bloom Filters

Goal: approximately represent a set of n elements
using a bit array

e Returns either:
* Definitely NOT in the set
e Possibly in the set

Parameters: m, k

 m: Number of bits in the array

* k: Set of k hash functions { h;, h,, ..., h, }, each with
range {0..m-1}

Concrete Example: k=3, m=10

Concrete Example: k=3, m=10

Set: ‘

Concrete Example: k=3, m=10

INSERT ()

h; |)

h, |)

hy |)

Set: ‘

Concrete Example: k=3, m=10

INSERT (

h; |

h, |

hy (

)

O 1 _ Note: bit was

already set

Set: ‘

Concrete Example: k=3, m=10

All k bits are 1:

return
h; | .) “possibly in set”

Set: ‘

Concrete Example: k=3, m=10

Not all k bits are 1:

return
hy A) “definitely NOT in set”

Set: ‘

Concrete Example: k=3, m=10

® ® @
M = O(1|0|1(1|0(0|1|0 (1

All k bits are 1:
return

G
h, (.) “possibly in set”

False Positive!

Tuning False Positives

* What happens if we increase m?
 What happens if we increase k?

* False positive rate f is:

= (-) ey

P(a given bit is still 0) after n insertions with k hash functions

Bloom Filters

* Are there any problems with Bloom filters?
* What operations do they support/not support?
 How do you grow a Bloom filter?

 What if your filter itself exceeds RAM (how bad is
locality)?
* What does the cache behavior look like?

Quotient Filters

* Based on a technique from a homework question in
Donald Knuth’s “The Art of Computer
Programming: Sorting and Searching, volume 3”
(Section 6.4, exercise 13)

* Quotienting Idea:

Hash: ‘1011001011011100101

Quotient Filters

* Based on a technique from a homework question in
Donald Knuth’s “The Art of Computer
Programming: Sorting and Searching, volume 3”
(Section 6.4, exercise 13)

° Quotlentlng Idea., L ‘Z\ Remaining bits are discarded/lost

Hash: ‘101100I101101:

- s s .

Quotient: g most significant bits

Building a Quotient Filter

* The quotient is used as an index into an m-bucket array, where the
is stored.

* Essentially, a hashtable that stores a as the value
* The quotient is implicitly stored because it is the bucket index

* Collisions are resolved using linear probing and 3 extra bits per bucket

* is_occupied: whether aslotis the canonical slot for some value
currently stored in the filter

* is_continuation: whether aslot holdsa that is part of a
run (but not the first element in the run)

. .i.ls_shifted: whether a slot holds a that is not in its canonical
slot

* A canonical slot is an element’s “home bucket”, i.e., where it belongs
in the absence of collisions.

Quotient Filter Example

Table of
0 1 2 3 4 5 6 7 8 9 objects with
Hash table quot!ents/
with external v v v v remainders
o for reference
chaining a c f g | fa| Fr
v v v B 1 b
b d h C 3 C
Hash table v D g d
T E e
with I.|near o F 2 p
probing + G 6 9
bits is_contjinuation H 6 h
is_shifted | cluster _
is_occupied { L run ¥ -l
‘ 0 1 2 3 4 5 6 7 8 9
olofe[1]e]ofe][1][1]1]0]0]2]1[1]0[2]1]1]0][1]0]0[1]0][2]1]0]0]0
a b C d e f g h

Figure 1: An example quotient filter and its representation.

[https://www.usenix.org/conference/hotstoragel1/dont-thrash-how-cache-your-hash-flash]

Quotient Filter Example

is _occupied l-
‘ 0V ¥
o/o]o

0 1 2 3 4 5 6 7 8 9
\ \4 \4 \
a c f g fl fal| fr
A 1 a
\ \ 4 \4 B 1 b
b d h C 3 d
D 3 d
\4 E 3 e
e F 4 f
G 6 g
is_contjnuation H 6 h
is_shifted cluster
L run o
1 2 3 4 5 6 7 8 9
1[e]efe]1]1]1]0]o]1]1]1]0]1]1]1]0[1][0]0]1]0[1][1]0]0]0
a b C d e f g h

Figure 1: An example quotient filter and its representation.

[https://www.usenix.org/conference/hotstoragel1/dont-thrash-how-cache-your-hash-flash]

Quotient Filter Example

o0

2|859

132 609 859 402

Quotient Filter Example

/
0)132 (2)609 3]402
Y 859 collided with 609, so 859 is both
2)859 shifted and part of a run. 402 would
l live here, so this bucket is occupied
1ToTo ofo]o 1Jo]o] 1]1]1] ofo1 ofofo
132 609 859 402

Collision, but 609 is in it’s canonical slot,t
so is_occupied is set

is occupied is_shifted

?

is continuation

1

402 did not collide with any elements,
but it was shifted from its canonical slot
by 609 and 859.

Quotient Filter Concept-check

* What are the possible reasons for a collision?
* Which collisions are treated as “false positives”

* What parameters does the QF give the user? In
other words:
* What knobs can you turn to control the size of the filter?

* What knobs can you turn to control the false positive
rate of the filter?

Quotient Filter Concept-check

* What are the possible reasons for a collision?
e Collisions in the hashtable
e Same quotient, but different remainders cause shifting
e Collisions in the hashspace

 Different keys may produce identical quotients/remainders
 If a hash function collision -> not the QF’s fault
* If due to dropped bits during “quotienting” -> that is the QF’s fault

* Which collisions are treated as “false positives”
e Collisions in the hash space

* What parameters does the QF give the user? In other
words:

* What knobs can you turn to control the size of the filter?

.]\c/\llhat?knobs can you turn to control the false positive rate of the
ilter:

e Quotient bits (number of buckets)
 Remainder bits (how many unique bits per element to store)

Why QF over BF?

e Supports deletes
e Supports “merges”

* Good cache locality
 How many locations accessed per operation?

* Some math can show that runs/clusters are expected to be
small

 Don’t Thrash, How to Cache Your Hash on Flash also
introduces the Cascade filter, a write-optimized filter
made up of increasingly large QFs that spill over to disk.

e Similar idea to Log-structured merge trees, which we will
discuss soon!

Cascade Filter

@ [E|G[Q[R|T|W | RAM
1 [B]I[K[N]S[U | FLASH
2 |[A[C[D[F[H][J[L[M[O][P|V]X |

0| | @ RAM
1] | FLASH
2 | |

3[A[B]C[D[E[F]G[H]I[J[K]L[M]N][O]P]Q |

Figure 2: Merging QFs. Three QF's of different sizes are shown
above, and they are merged into a single large QF below.

[https://www.usenix.org/conference/hotstoragel1/dont-thrash-how-cache-your-hash-flash]

