
FAT
Developer(s) Microsoft, SCP, IBM,

Compaq, Digital
Research, Novell,
Caldera

Full name File Allocation Table:
FAT12 (12-
bit version),
FAT16 (16-
bit versions),
FAT32 (32-bit version
with 28 bits used),
exFAT (64-
bit versions)

Introduced 1977 (Standalone
Disk BASIC-80)
FAT12: August 1980
(SCP QDOS)
FAT16: August 1984
(IBM PC DOS 3.0)
FAT16B: November
1987 (Compaq MS-
DOS 3.31)
FAT32: August 1996
(Windows 95 OSR2)
exFAT: November
2006 (Windows
Embedded CE 6.0)

Partition
identifier

MBR/EBR:
FAT12: 0x01 e.a.
FAT16: 0x04 0x06 0x0E
e.a.
FAT32: 0x0B 0x0C e.a.
exFAT: 0x07 e.a.
BDP:

EBD0A0A2-B9E5-4433-

87C0-68B6B72699C7

Structures

Directory Table

Design of the FAT file system
A FAT file system is a specific type of computer file system architecture and
a family of industry-standard file systems utilizing it.

The FAT file system is a legacy file system which is simple and robust.[3] It
offers good performance even in very light-weight implementations, but
cannot deliver the same performance, reliability and scalability as some
modern file systems. It is, however, supported for compatibility reasons by
nearly all currently developed operating systems for personal computers and
many home computers, mobile devices and embedded systems, and thus is a
well suited format for data exchange between computers and devices of almost
any type and age from 1981 through the present.

Originally designed in 1977 for use on floppy disks, FAT was soon adapted and
used almost universally on hard disks throughout the DOS and Windows 9x
eras for two decades. Today, FAT file systems are still commonly found on
floppy disks, USB sticks, flash and other solid-state memory cards and
modules, and many portable and embedded devices. DCF implements FAT as
the standard file system for digital cameras since 1998.[4] FAT is also utilized
for the EFI system partition (partition type 0xEF) in the boot stage of EFI-
compliant computers.

For floppy disks, FAT has been standardized as ECMA-107[5] and
ISO/IEC 9293:1994[6] (superseding ISO 9293:1987[7]). These standards cover
FAT12 and FAT16 with only short 8.3 filename support; long filenames with
VFAT are partially patented.[8]

Technical overview
Layout
Reserved sectors area

Boot Sector
BIOS Parameter Block
Extended BIOS Parameter Block
FAT32 Extended BIOS Parameter Block
Exceptions

FS Information Sector

File Allocation Table
Cluster map

Special entries
Cluster values

Size limits
Fragmentation

Contents

https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Seattle_Computer_Products
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Compaq
https://en.wikipedia.org/wiki/Digital_Research
https://en.wikipedia.org/wiki/Novell
https://en.wikipedia.org/wiki/Caldera_UK
https://en.wikipedia.org/wiki/Standalone_Disk_BASIC-80
https://en.wikipedia.org/wiki/86-DOS
https://en.wikipedia.org/wiki/PC_DOS
https://en.wikipedia.org/wiki/Compaq
https://en.wikipedia.org/wiki/Windows_95_OSR2
https://en.wikipedia.org/wiki/Windows_Embedded_CE_6.0
https://en.wikipedia.org/wiki/Partition_type
https://en.wikipedia.org/wiki/Master_Boot_Record
https://en.wikipedia.org/wiki/Extended_Boot_Record
https://en.wikipedia.org/wiki/FAT12
https://en.wikipedia.org/wiki/Partition_type#PID_01h
https://en.wikipedia.org/wiki/FAT16
https://en.wikipedia.org/wiki/Partition_type#PID_04h
https://en.wikipedia.org/wiki/Partition_type#PID_06h
https://en.wikipedia.org/wiki/Partition_type#PID_0Eh
https://en.wikipedia.org/wiki/FAT32
https://en.wikipedia.org/wiki/Partition_type#PID_0Bh
https://en.wikipedia.org/wiki/Partition_type#PID_0Ch
https://en.wikipedia.org/wiki/ExFAT
https://en.wikipedia.org/wiki/Partition_type#PID_07h
https://en.wikipedia.org/wiki/Basic_data_partition
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Home_computers
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Floppy_disk
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Windows_9x
https://en.wikipedia.org/wiki/USB_stick
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Memory_card
https://en.wikipedia.org/wiki/Design_rule_for_Camera_File_system
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/Partition_type#PID_EFh
https://en.wikipedia.org/wiki/Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Ecma_International
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/8.3_filename
https://en.wikipedia.org/wiki/Long_filename
https://en.wikipedia.org/wiki/FAT_patent

contents

File
allocation

Linked list

Bad blocks Cluster tagging

Limits

Max. volume
size

FAT12: 32 MB
(256 MB for 64 KB
clusters)
FAT16: 2 GB (4 GB
for 64 KB clusters)
FAT32: 2 TB (16 TB
for 4 KB sectors)

Max. file size 4,294,967,295 bytes
(4 GB - 1) with
FAT16B and FAT32[1]

Max. number
of files

FAT12: 4,068 for
8 KB clusters
FAT16: 65,460 for
32 KB clusters
FAT32: 268,173,300
for 32 KB clusters

Max.
filename
length

8.3 filename, or 255
UCS-2 characters
when using LFN

Features

Dates
recorded

Modified date/time,
creation date/time
(DOS 7.0 and higher
only), access date
(only available with
ACCDATE
enabled),[2] deletion
date/time (only with
DELWATCH 2)

Date range 1980-01-01 to 2099-
12-31 (2107-12-31)

Date
resolution

2 seconds for last
modified time,
10 ms for creation
time,
1 day for access
date,
2 seconds for
deletion time

Directory table
Directory entry
VFAT long file names

See also
Notes
References
External links

The name of the file system originates from the file system's prominent usage
of an index table, the File Allocation Table, statically allocated at the time of
formatting. The table contains entries for each cluster, a contiguous area of
disk storage. Each entry contains either the number of the next cluster in the
file, or else a marker indicating end of file, unused disk space, or special
reserved areas of the disk. The root directory of the disk contains the number
of the first cluster of each file in that directory; the operating system can then
traverse the FAT table, looking up the cluster number of each successive part
of the disk file as a cluster chain until the end of the file is reached. In much
the same way, subdirectories are implemented as special files containing the
directory entries of their respective files.

Originally designed as an 8-bit file system, the maximum number of clusters
has been significantly increased as disk drives have evolved, and so the
number of bits used to identify each cluster has grown. The successive major
versions of the FAT format are named after the number of table element bits:
12 (FAT12), 16 (FAT16), and 32 (FAT32). Except for the original 8-bit FAT
precursor, each of these variants is still in use. The FAT standard has also been
expanded in other ways while generally preserving backward compatibility
with existing software.

Technical overview

Layout

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Terabyte
https://en.wikipedia.org/wiki/4Kn
https://en.wikipedia.org/wiki/Gigabyte
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/8.3_filename
https://en.wikipedia.org/wiki/UCS-2
https://en.wikipedia.org/wiki/Long_filename
https://en.wikipedia.org/wiki/ACCDATE_(CONFIG.SYS_directive)
https://en.wikipedia.org/wiki/Epoch_of_1980-01-01
https://en.wikipedia.org/wiki/Year_2100_problem
https://en.wikipedia.org/wiki/Year_2108_problem
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/Cluster_(file_system)
https://en.wikipedia.org/wiki/FAT12
https://en.wikipedia.org/wiki/FAT16
https://en.wikipedia.org/wiki/FAT32
https://en.wikipedia.org/wiki/8-bit_FAT

Forks Not natively

Attributes Read-only, Hidden,
System, Volume,
Directory, Archive

File system
permissions

FAT12/FAT16: File,
directory and volume
access rights for
Read, Write,
Execute, Delete only
with DR-DOS,
PalmDOS, Novell
DOS, OpenDOS,
FlexOS, 4680 OS,
4690 OS, Concurrent
DOS, Multiuser DOS,
System Manager,
REAL/32 (Execute
right only with
FlexOS, 4680 OS,
4690 OS; individual
file / directory
passwords not with
FlexOS, 4680 OS,
4690 OS;
World/Group/Owner
permission classes
only with multiuser
security loaded)
FAT32: Partial, only
with DR-DOS,
REAL/32 and 4690
OS

Transparent
compression

FAT12/FAT16: Per-
volume, SuperStor,
Stacker,
DoubleSpace,
DriveSpace
FAT32: No

Transparent
encryption

FAT12/FAT16: Per-
volume only with DR-
DOS
FAT32: No

Overview of the order of structures in a FAT partition or disk

Region Size in sectors Contents

Reserved
sectors

(number of reserved
sectors)

Boot Sector

FS Information Sector (FAT32
only)

More reserved sectors (optional)

FAT
Region

(number of FATs) *
(sectors per FAT)

File Allocation Table #1

File Allocation Table #2 ...
(optional)

Root
Directory
Region

(number of root entries
* 32) / (bytes per sector)

Root Directory (FAT12 and FAT16
only)

Data
Region

(number of clusters) *
(sectors per cluster)

Data Region (for files and
directories) ... (to end of partition
or disk)

A FAT file system is composed of four regions:

Reserved sectors
The first reserved sector (logical sector 0) is the Boot
Sector (also called Volume Boot Record or simply VBR). It
includes an area called the BIOS Parameter Block (BPB)
which contains some basic file system information, in
particular its type and pointers to the location of the other
sections, and usually contains the operating system's boot
loader code.
Important information from the Boot Sector is accessible
through an operating system structure called the Drive
Parameter Block (DPB) in DOS and OS/2.
The total count of reserved sectors is indicated by a field
inside the Boot Sector, and is usually 32 on FAT32 file
systems.[9]

For FAT32 file systems, the reserved sectors include a File
System Information Sector at logical sector 1 and a Backup
Boot Sector at logical sector 6.
While many other vendors have continued to utilize a
single-sector setup (logical sector 0 only) for the bootstrap
loader, Microsoft's boot sector code has grown to span over
logical sectors 0 and 2 since the introduction of FAT32, with
logical sector 0 depending on sub-routines in logical sector
2. The Backup Boot Sector area consists of three logical
sectors 6, 7, and 8 as well. In some cases, Microsoft also
uses sector 12 of the reserved sectors area for an
extended boot loader.

FAT Region
This typically contains two copies of the File Allocation
Table for the sake of redundancy checking, although rarely
used, even by disk repair utilities.
These are maps of the Data Region, indicating which clusters are used by files and directories.
In FAT12 and FAT16 they immediately follow the reserved sectors.

https://en.wikipedia.org/wiki/Fork_(file_system)
https://en.wikipedia.org/wiki/File_system_permissions
https://en.wikipedia.org/wiki/DR-DOS
https://en.wikipedia.org/wiki/PalmDOS
https://en.wikipedia.org/wiki/Novell_DOS
https://en.wikipedia.org/wiki/OpenDOS
https://en.wikipedia.org/wiki/FlexOS
https://en.wikipedia.org/wiki/IBM_4680_OS
https://en.wikipedia.org/wiki/IBM_4690_OS
https://en.wikipedia.org/wiki/Concurrent_DOS
https://en.wikipedia.org/wiki/Multiuser_DOS
https://en.wikipedia.org/wiki/Datapac_System_Manager
https://en.wikipedia.org/wiki/REAL/32
https://en.wikipedia.org/wiki/SuperStor
https://en.wikipedia.org/wiki/Stacker_(disk_compression)
https://en.wikipedia.org/wiki/DoubleSpace
https://en.wikipedia.org/wiki/DriveSpace
https://en.wikipedia.org/wiki/Filesystem-level_encryption
https://en.wikipedia.org/wiki/DR-DOS
https://en.wikipedia.org/wiki/Boot_sector
https://en.wikipedia.org/wiki/Volume_Boot_Record
https://en.wikipedia.org/wiki/BIOS_Parameter_Block
https://en.wikipedia.org/wiki/Boot_loader
https://en.wikipedia.org/w/index.php?title=Drive_Parameter_Block&action=edit&redlink=1

Typically the extra copies are kept in tight synchronization on writes, and on reads they are only
used when errors occur in the first FAT. In FAT32, it is possible to switch from the default
behaviour and select a single FAT out of the available ones to be used for diagnosis purposes.
The first two clusters (cluster 0 and 1) in the map contain special values.

Root Directory Region
This is a Directory Table that stores information about the files and directories located in the root
directory. It is only used with FAT12 and FAT16, and imposes on the root directory a fixed
maximum size which is pre-allocated at creation of this volume. FAT32 stores the root directory
in the Data Region, along with files and other directories, allowing it to grow without such a
constraint. Thus, for FAT32, the Data Region starts here.

Data Region
This is where the actual file and directory data is stored and takes up most of the partition.
Traditionally, the unused parts of the data region are initialized with a filler value of 0xF6 as per
the INT 1Eh's Disk Parameter Table (DPT) during format on IBM compatible machines, but also
used on the Atari Portfolio. 8-inch CP/M floppies typically came pre-formatted with a value of
0xE5;[10] by way of Digital Research this value was also used on Atari ST formatted floppies.[nb 1]

Amstrad used 0xF4 instead. Some modern formatters wipe hard disks with a value of 0x00,
whereas a value of 0xFF, the default value of a non-programmed flash block, is used on flash
disks to reduce wear. The latter value is typically also used on ROM disks. (Some advanced
formatting tools allow to configure the format filler byte.[nb 2])

The size of files and subdirectories can be increased arbitrarily (as long as there are free
clusters) by simply adding more links to the file's chain in the FAT. Note however, that files are
allocated in units of clusters, so if a 1 KB file resides in a 32 KB cluster, 31 KB are wasted.

FAT32 typically commences the Root Directory Table in cluster number 2: the first cluster of the
Data Region.

FAT uses little-endian format for all entries in the header (except for, where explicitly mentioned, for some entries on Atari
ST boot sectors) and the FAT(s). It is possible to allocate more FAT sectors than necessary for the number of clusters. The
end of the last sector of each FAT copy can be unused if there are no corresponding clusters. The total number of sectors
(as noted in the boot record) can be larger than the number of sectors used by data (clusters × sectors per cluster), FATs
(number of FATs × sectors per FAT), the root directory (n/a for FAT32), and hidden sectors including the boot sector: this
would result in unused sectors at the end of the volume. If a partition contains more sectors than the total number of
sectors occupied by the file system it would also result in unused sectors, at the end of the partition, after the volume.

On non-partitioned devices, such as floppy disks, the Boot Sector (VBR) is the first sector (logical sector 0 with physical
CHS address 0/0/1 or LBA address 0). For partitioned devices such as hard drives, the first sector is the Master Boot
Record defining partitions, while the first sector of partitions formatted with a FAT file system is again the Boot Sector.

Common structure of the first 11 bytes used by most FAT versions for IBM compatible x86-machines since DOS 2.0 are:

Reserved sectors area

Boot Sector

https://en.wikipedia.org/w/index.php?title=Disk_Parameter_Table&action=edit&redlink=1
https://en.wikipedia.org/wiki/Atari_Portfolio
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Amstrad
https://en.wikipedia.org/wiki/Program-erase_cycle
https://en.wikipedia.org/wiki/Little-endian
https://en.wikipedia.org/wiki/Floppy_disk
https://en.wikipedia.org/wiki/Boot_Sector
https://en.wikipedia.org/wiki/Volume_Boot_Record
https://en.wikipedia.org/wiki/Master_Boot_Record

Byte
offset

Length
(bytes) Contents

0x000 3

Jump instruction. If the boot sector has a valid signature residing in the last two bytes of the boot
sector (tested by most boot loaders residing in the System BIOS or the MBR) and this volume is
booted from, the prior boot loader will pass execution to this entry point with certain register values,
and the jump instruction will then skip past the rest of the (non-executable) header. See Volume
Boot Record.
Since DOS 2.0, valid x86-bootable disks must start with either a short jump followed by a NOP
(opstring sequence 0xEB 0x?? 0x90[11][12] as seen since DOS 3.0[nb 3]—and on DOS 1.1[13][14])
or a near jump (0xE9 0x?? 0x??[11][12] as seen on most (Compaq, TeleVideo) DOS 2.x
formatted disks as well as on some (Epson, Olivetti) DOS 3.1 disks). For backward compatibility
MS-DOS, PC DOS and DR-DOS also accept a jump (0x69 0x?? 0x??)[11][12][15] on removable
disks. On hard disks, DR DOS additionally accepts the swapped JMPS sequence starting with a
NOP (0x90 0xEB 0x??),[15] whereas MS-DOS/PC DOS do not. (See below for Atari ST
compatibility.) The presence of one of these opstring patterns (in combination with a test for a valid
media descriptor value at offset 0x015) serves as indicator to DOS 3.3 and higher that some kind
of BPB is present (although the exact size should not be determined from the jump target since
some boot sectors contain private boot loader data following the BPB), while for DOS 1.x (and
some DOS 3.0) volumes, they will have to fall back to the DOS 1.x method to detect the format via
the media byte in the FAT (in logical sector 1).

0x003 8 OEM Name (padded with spaces 0x20). This value determines in which system the disk was
formatted.
Although officially documented as free for OEM use, MS-DOS/PC DOS (since 3.1),
Windows 95/98/SE/ME and OS/2 check this field to determine which other parts of the boot record
can be relied upon and how to interpret them. Therefore, setting the OEM label to arbitrary or
bogus values may cause MS-DOS, PC DOS and OS/2 to not recognize the volume properly and
cause data corruption on writes.[16][17][18] Common examples are "IBM␠␠3.3", "MSDOS5.0",
"MSWIN4.1", "IBM␠␠7.1", "mkdosfs␠", and "FreeDOS␠".

Some vendors store licensing info or access keys in this entry.

The Volume Tracker in Windows 95/98/SE/ME will overwrite the OEM label with "?????IHC"
signatures (a left-over from "␠OGACIHC" for "Chicago") even on a seemingly read-only disk access
(such as a DIR A:) if the medium is not write-protected. Given the dependency on certain values
explained above, this may, depending on the actual BPB format and contents, cause MS-
DOS/PC DOS and OS/2 to no longer recognize a medium and throw error messages despite the
fact that the medium is not defective and can still be read without problems under other operating
systems. Windows 9x reads that self-marked disks without any problems but giving some strange
values for non-meaning parameters which not exist or are not used when the disk was formatted
with older BPB specification, e.g. disk serial number (which exists only for disks formatted on DOS
5.0 or later, and in Windows 9x after overwriting OEM label with ?????IHC will report it as 0000-
0000 or any other value stored in disk serial number field when using disk formatted on other
system).[19] This applies only to removable disk drives.

Some boot loaders make adjustments or refuse to pass control to a boot sector depending on
certain values detected here (e.g., NEWLDR offset 0x018).

https://en.wikipedia.org/wiki/Volume_Boot_Record
https://en.wikipedia.org/wiki/Opstring
https://en.wikipedia.org/wiki/Compaq
https://en.wikipedia.org/wiki/TeleVideo_PC_DOS_2.11
https://en.wikipedia.org/wiki/Epson
https://en.wikipedia.org/wiki/Olivetti
https://en.wikipedia.org/wiki/PC_DOS_3.3
https://en.wikipedia.org/wiki/MS-DOS_5.0
https://en.wikipedia.org/wiki/Windows_4.1
https://en.wikipedia.org/wiki/PC_DOS_7.1
https://en.wikipedia.org/wiki/Mkdosfs
https://en.wikipedia.org/wiki/FreeDOS
https://en.wikipedia.org/wiki/Windows_Chicago
https://en.wikipedia.org/wiki/Windows_9x
https://en.wikipedia.org/wiki/Windows_9x
https://en.wikipedia.org/wiki/Master_Boot_Record#NEWLDR_OFS_018h

The boot ROM of the Wang Professional Computer will only treat a disk as bootable if the first four
characters of the OEM label are "Wang".

If, in an FAT32 EBPB, the signature at sector offset 0x042 is 0x29 and both total sector entries are
0, the file system entry may serve as a 64-bit total sector count entry and the OEM label entry may
be used as alternative file system type instead of the normal entry at offset 0x052.

In a similar fashion, if this entry is set to "EXFAT␠␠␠", it indicates the usage of an exFAT BPB
located at sector offset 0x040 to 0x077, whereas NTFS volumes use "NTFS␠␠␠␠"[20] to indicate
an NTFS BPB.

0x00B varies
BIOS Parameter Block (13, 19, 21 or 25 bytes), Extended BIOS Parameter Block (32 or 51 bytes)
or FAT32 Extended BIOS Parameter Block (60 or 79 bytes); size and contents varies between
operating systems and versions, see below

varies varies

File system and operating system specific boot code; often starts immediately behind [E]BPB, but
sometimes additional "private" boot loader data is stored between the end of the [E]BPB and the
start of the boot code; therefore the jump at offset 0x001 cannot be used to reliably derive the
exact [E]BPB format from.
(In conjunction with at least a DOS 3.31 BPB some GPT boot loaders (like BootDuet) use 0x1FA–
0x1FD to store the high 4 bytes of the hidden sectors for volumes located outside the first 232-
1 sectors. Since this location may contain code or other data in other boot sectors, it may not be
written to when 0x1F9–0x1FD do not all contain zero.)

0x1FD 1

Physical drive number (only in DOS 3.2 to 3.31 boot sectors). With OS/2 1.0 and DOS 4.0, this
entry moved to sector offset 0x024 (at offset 0x19 in the EBPB). Most Microsoft and IBM boot
sectors maintain values of 0x00 at offset 0x1FC and 0x1FD ever since, although they are not part
of the signature at 0x1FE.
If this belongs to a boot volume, the DR-DOS 7.07 enhanced MBR can be configured (see
NEWLDR offset 0x014) to dynamically update this entry to the DL value provided at boot time or
the value stored in the partition table. This enables booting off alternative drives, even when the
VBR code ignores the DL value.

0x1FE 2 Boot sector signature (0x55 0xAA).[9][nb 4] This signature indicates an IBM PC compatible boot
code and is tested by most boot loaders residing in the System BIOS or the MBR before passing
execution to the boot sector's boot code (but, e.g., not by the original IBM PC ROM-BIOS[21]). This
signature does not indicate a particular file system or operating system. Since this signature is not
present on all FAT-formatted disks (e.g., not on DOS 1.x[13][14] or non-x86-bootable FAT volumes),
operating systems must not rely on this signature to be present when logging in volumes (old
issues of MS-DOS/PC DOS prior to 3.3 checked this signature, but newer issues as well as DR-
DOS do not). Formatting tools must not write this signature if the written boot sector does not
contain at least an x86-compatible dummy boot loader stub; at minimum, it must halt the CPU in an
endless loop (0xF4 0xEB 0xFD) or issue an INT 19h and RETF (0xCD 0x19 0xCB). These
opstrings should not be used at sector offset 0x000, however, because DOS tests for other
opcodes as signatures. Many MSX-DOS 2 floppies use 0xEB 0xFE 0x90 at sector offset 0x000
to catch the CPU in a tight loop while maintaining an opcode pattern recognized by MS-DOS/PC
DOS.
This signature must be located at fixed sector offset 0x1FE for sector sizes 512 or higher. If the
physical sector size is larger, it may be repeated at the end of the physical sector.

Atari STs will assume a disk to be Atari 68000 bootable if the checksum over the 256 big-endian
words of the boot sector equals 0x1234.[22][nb 5] If the boot loader code is IBM compatible, it is
important to ensure that the checksum over the boot sector does not match this checksum by

https://en.wikipedia.org/wiki/Wang_Professional_Computer
https://en.wikipedia.org/wiki/ExFAT
https://en.wikipedia.org/wiki/ExFAT_BPB
https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/NTFS_BPB
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://en.wikipedia.org/wiki/Master_Boot_Record#NEWLDR_OFS_014h
https://en.wikipedia.org/wiki/Volume_Boot_Record
https://en.wikipedia.org/wiki/VBR_boot_signature
https://en.wikipedia.org/w/index.php?title=INT_19h&action=edit&redlink=1
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/68000
https://en.wikipedia.org/wiki/Big-endian

accident. If this would happen to be the case, changing an unused bit (e.g., before or after the boot
code area) can be used to ensure this condition is not met.

In rare cases, a reversed signature 0xAA 0x55 has been observed on disk images. This can be
the result of a faulty implementation in the formatting tool based on faulty documentation,[nb 4] but it
may also indicate a swapped byte order of the disk image, which might have occurred in transfer
between platforms using a different endianness. BPB values and FAT12, FAT16 and FAT32 file
systems are meant to use little-endian representation only and there are no known
implementations of variants using big-endian values instead.

FAT-formatted Atari ST floppies have a very similar boot sector layout:

Byte
offset

Length
(bytes) Contents

0x000 2
Jump instruction. Original Atari ST boot sectors start with a 68000 BRA.S instruction (0x60 0x??).
For compatibility with PC operating systems, Atari ST formatted disks since TOS 1.4 start with
0xE9 0x?? instead.

0x002 6
OEM Name (padded with spaces 0x20), e.g., "Loader" (0x4C 0x6F 0x61 0x64 0x65 0x72)
on volumes containing an Atari ST boot loader. See OEM Name precautions for PC formatted disks
above. Note the different offset and length of this entry compared to the entry on PC formatted
disks.

0x008 3

Disk serial number (default: 0x00 0x00 0x00), used by Atari ST to detect a disk change.
(Windows 9x Volume Tracker will always store "IHC" here on non-write-protected floppy disks; see
above.) This value must be changed if the disk content is externally changed, otherwise Atari STs
may not recognize the change on re-insertion. This entry overlaps the OEM Name field on PC
formatted disks. For maximum compatibility, it may be necessary to match certain patterns here;
see above.

0x00B 19 DOS 3.0 BIOS Parameter Block (little-endian format)

0x01E varies Private boot sector data (mixed big-endian and little-endian format)

varies varies
File system and operating system specific Atari ST boot code. No assumptions must be made in
regard to the load position of the code, which must be relocatable. If loading an operating system
fails, the code can return to the Atari ST BIOS with a 68000 RTS (opcode 0x4E75 with big-endian
byte sequence 0x4E 0x75[nb 4]) instruction and all registers unaltered.

0x1FE 2

Checksum. The 16-bit checksum over the 256 big-endian words of the 512 bytes boot sector
including this word must match the magic value 0x1234 in order to indicate an Atari ST 68000
executable boot sector code.[22] This checksum entry can be used to align the checksum
accordingly.[nb 5]

If the logical sector size is larger than 512 bytes, the remainder is not included in the checksum and
is typically zero-filled.[22] Since some PC operating systems erroneously do not accept FAT
formatted floppies if the 0x55 0xAA[nb 4] signature is not present here, it is advisable to place the
0x55 0xAA in this place (and add an IBM compatible boot loader or stub) and use an unused word
in the private data or the boot code area or the serial number in order to ensure that the checksum
0x1234[nb 5] is not matched (unless the shared fat code overlay would be both IBM PC and Atari
ST executable at the same time).

FAT12-formatted MSX-DOS volumes have a very similar boot sector layout:

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Little-endian
https://en.wikipedia.org/wiki/Big-endian
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/68000
https://en.wikipedia.org/wiki/Atari_TOS
https://en.wikipedia.org/wiki/Little-endian
https://en.wikipedia.org/wiki/Big-endian
https://en.wikipedia.org/wiki/Little-endian
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Big-endian
https://en.wikipedia.org/wiki/Modular_sum
https://en.wikipedia.org/wiki/Big-endian
https://en.wikipedia.org/wiki/Magic_number_(programming)
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/MSX-DOS

Byte
offset

Length
(bytes) Contents

0x000 3 Dummy jump instruction (e.g., 0xEB 0xFE 0x90).

0x003 8 OEM Name (padded with spaces 0x20).

0x00B 19 DOS 3.0 BPB

0x01E varies
(2)

MSX-DOS 1 code entry point for Z80 processors into MSX boot code. This is where MSX-DOS 1
machines jump to when passing control to the boot sector. This location overlaps with BPB formats
since DOS 3.2 or the x86 compatible boot sector code of IBM PC compatible boot sectors and will
lead to a crash on the MSX machine unless special precautions have been taken such as catching
the CPU in a tight loop here (opstring 0x18 0xFE for JR 0x01E).

0x020 6 MSX-DOS 2 volume signature "VOL_ID".

0x026 1
MSX-DOS 2 undelete flag (default: 0x00. If the "VOL_ID" signature is present at sector offset
0x020, this flag indicates, if the volume holds deleted files which can be undeleted (see offset
0x0C in directory entries).

0x027 4 MSX-DOS 2 disk serial number (default: 0x00000000). If the "VOL_ID" signature is present at
sector offset 0x020, MSX-DOS 2 stores a volume serial number here for media change detection.

0x02B 5 reserved

0x030 varies
(2)

MSX-DOS 2 code entry point for Z80 processors into MSX boot code. This is where MSX-DOS 2
machines jump to when passing control to the boot sector. This location overlaps with EBPB
formats since DOS 4.0 / OS/2 1.2 or the x86 compatible boot sector code of IBM PC compatible
boot sectors and will lead to a crash on the MSX machine unless special precautions have been
taken such as catching the CPU in a tight loop here (opstring 0x18 0xFE for JR 0x030).

0x1FE 2 Signature

Common structure of the first 25 bytes of the BIOS Parameter Block (BPB) used by FAT versions since DOS 2.0 (bytes at
sector offset 0x00B to 0x017 are stored since DOS 2.0, but not always used before DOS 3.2, values at 0x018 to 0x01B are
used since DOS 3.0):

BIOS Parameter Block

https://en.wikipedia.org/wiki/BIOS_Parameter_Block

Sector
offset

BPB
offset

Length
(bytes) Contents

0x00B 0x00 2

Bytes per logical sector in powers of two; the most common value is 512. Some operating
systems don't support other sector sizes. For simplicity and maximum performance, the
logical sector size is often identical to a disk's physical sector size, but can be larger or
smaller in some scenarios.
The minimum allowed value for non-bootable FAT12/FAT16 volumes with up to 65535
logical sectors is 32 bytes, or 64 bytes for more than 65535 logical sectors. The minimum
practical value is 128. Some pre-DOS 3.31 OEM versions of DOS used logical sector
sizes up to 8192 bytes for logical sectored FATs. Atari ST GEMDOS supports logical
sector sizes between 512 and 4096.[22] DR-DOS supports booting off FAT12/FAT16
volumes with logical sector sizes up to 32 KB and INT 13h implementations supporting
physical sectors up to 1024 bytes/sector.[nb 6] The minimum logical sector size for
standard FAT32 volumes is 512 bytes, which can be reduced downto 128 bytes without
support for the FS Information Sector.

Floppy drives and controllers use physical sector sizes of 128, 256, 512 and 1024 bytes
(e.g., PC/AX). The Atari Portfolio supports a sector size of 512 for volumes larger than 64
KB, 256 bytes for volumes larger 32 KB and 128 bytes for smaller volumes. Magneto-
optical drives used sector sizes of 512, 1024 and 2048 bytes. In 2005 some Seagate
custom hard disks used sector sizes of 1024 bytes instead of the default 512 bytes.[23]

Advanced Format hard disks use 4096 bytes per sector (4Kn) since 2010, but will also be
able to emulate 512 byte sectors (512e) for a transitional period.

0x00D 0x02 1

Logical sectors per cluster. Allowed values are 1, 2, 4, 8, 16, 32, 64, and 128. Some MS-
DOS 3.x versions supported a maximum cluster size of 4 KB only, whereas modern MS-
DOS/PC DOS and Windows 95 support a maximum cluster size of 32 KB. Windows
98/SE/ME partially support a cluster size of 64 KB as well, but some FCB services are not
available on such disks and various applications fail to work. The Windows NT family and
some alternative DOS versions such as PTS-DOS fully support 64 KB clusters.
For most DOS-based operating systems, the maximum cluster size remains at 32 KB (or
64 KB) even for sector sizes larger than 512 bytes.

For logical sector sizes of 1 KB, 2 KB and 4 KB, Windows NT 4.0 supports cluster sizes
of 128 KB, while for 2 KB and 4 KB sectors the cluster size can reach 256 KB.

Some versions of DR-DOS provide limited support for 128 KB clusters with 512
bytes/sector using a sectors/cluster value of 0.

MS-DOS/PC DOS will hang on startup if this value is erroneously specified as 0.[24]

0x00E 0x03 2

Count of reserved logical sectors. The number of logical sectors before the first FAT in the
file system image. At least 1 for this sector, usually 32 for FAT32 (to hold the extended
boot sector, FS info sector and backup boot sectors).
Since DR-DOS 7.0x FAT32 formatted volumes use a single-sector boot sector, FS info
sector and backup sector, some volumes formatted under DR-DOS use a value of 4 here.

0x010 0x05 1 Number of File Allocation Tables. Almost always 2; RAM disks might use 1. Most versions
of MS-DOS/PC DOS do not support more than 2 FATs. Some DOS operating systems
support only two FATs in their built-in disk driver, but support other FAT counts for block
device drivers loaded later on.

https://en.wikipedia.org/wiki/Logical_sectored_FAT
https://en.wikipedia.org/wiki/GEMDOS
https://en.wikipedia.org/wiki/Atari_Portfolio
https://en.wikipedia.org/wiki/Magneto-optical_drive
https://en.wikipedia.org/wiki/Seagate_Technology
https://en.wikipedia.org/wiki/Advanced_Format
https://en.wikipedia.org/wiki/4Kn
https://en.wikipedia.org/wiki/512e
https://en.wikipedia.org/wiki/PTS-DOS
https://en.wikipedia.org/wiki/RAM_disk

Volumes declaring 2 FATs in this entry will never be treated as TFAT volumes. If the value
differs from 2, some Microsoft operating systems may attempt to mount the volume as a
TFAT volume and use the second cluster (cluster 1) of the first FAT to determine the TFAT
status.

0x011 0x06 2

Maximum number of FAT12 or FAT16 root directory entries. 0 for FAT32, where the root
directory is stored in ordinary data clusters; see offset 0x02C in FAT32 EBPBs.
A value of 0 without a FAT32 EBPB (no signature 0x29 or 0x28 at offset 0x042) may
also indicate a variable-sized root directory in some non-standard FAT12 and FAT16
implementations, which store the root directory start cluster in the cluster 1 entry in the
FAT.[25] This extension, however, is not supported by mainstream operating systems,[25]

as it can be conflictive with other uses of the cluster 1 entry for maintenance flags, the
current end-of-chain-marker, or TFAT extensions.

This value must be adjusted so that directory entries always consume full logical sectors,
whereby each directory entry takes up 32 bytes. MS-DOS/PC DOS require this value to
be a multiple of 16. The maximum value supported on floppy disks is 240,[11] the
maximum value supported by MS-DOS/PC DOS on hard disks is 512.[11] DR-DOS
supports booting off FAT12/FAT16 volumes, if the boot file is located in the first 2048 root
directory entries.

0x013 0x08 2 Total logical sectors (if zero, use 4 byte value at offset 0x020)

0x015 0x0A 1 Media descriptor (compare: FAT ID):[26][27][28][nb 3]

0xE5

8-inch (200 mm) single sided, 77 tracks per side, 26 sectors per track, 128 bytes per
sector (250.25 KB) (DR-DOS only)

0xED

5.25-inch (130 mm) double sided, 80 tracks per side, 9 sector, 720 KB (Tandy 2000
only)[18]

0xEE

Designated for non-standard custom partitions (utilizing non-standard BPB formats or
requiring special media access such as 48-/64-bit addressing); corresponds with
0xF8, but not recognized by unaware systems by design; value not required to be
identical to FAT ID, never used as cluster end-of-chain marker (Reserved for DR-
DOS)

0xEF

Designated for non-standard custom superfloppy formats; corresponds with 0xF0, but
not recognized by unaware systems by design; value not required to be identical to
FAT ID, never used as cluster end-of-chain marker (Reserved for DR-DOS)

0xF0[5][6][7]

3.5-inch (90 mm) double sided, 80 tracks per side, 18 or 36 sectors per track
(1440 KB, known as “1.44 MB”; or 2880 KB, known as “2.88 MB”).
Designated for use with custom floppy and superfloppy formats where the geometry is
defined in the BPB.
Used also for other media types such as tapes.[29]

https://en.wikipedia.org/wiki/TFAT
https://en.wikipedia.org/wiki/TFAT
https://en.wikipedia.org/wiki/Tandy_2000
https://en.wikipedia.org/wiki/Superfloppy

0xF4

Double density (Altos MS-DOS 2.11 only)[30]

0xF5

Fixed disk, 4-sided, 12 sectors per track (1.95? MB) (Altos MS-DOS 2.11 only)[30]

0xF8

Fixed disk (i.e., typically a partition on a hard disk). (since DOS 2.0)[31][32]

Designated to be used for any partitioned fixed or removable media, where the
geometry is defined in the BPB.
3.5-inch single sided, 80 tracks per side, 9 sectors per track (360 KB) (MS-DOS
3.1[12] and MSX-DOS)
5.25-inch double sided, 80 tracks per side, 9 sectors per track (720 KB) (Sanyo 55x
DS-DOS 2.11 only)[18]

Single sided (Altos MS-DOS 2.11 only)[30]

0xF9[5][6][7]

3.5-inch double sided, 80 tracks per side, 9 sectors per track (720 KB) (since DOS
3.2)[31]

3.5-inch double sided, 80 tracks per side, 18 sectors per track (1440 KB) (DOS 3.2
only)[31]

5.25-inch double sided, 80 tracks per side, 15 sectors per track (1200 KB, known as
“1.2 MB”) (since DOS 3.0)[31]

Single sided (Altos MS-DOS 2.11 only)[30]

0xFA

3.5-inch and 5.25-inch single sided, 80 tracks per side, 8 sectors per track (320 KB)
Used also for RAM disks and ROM disks (e.g., on Columbia Data Products[33] and on
HP 200LX)
Hard disk (Tandy MS-DOS only)

0xFB

3.5-inch and 5.25-inch double sided, 80 tracks per side, 8 sectors per track (640 KB)

0xFC

5.25-inch single sided, 40 tracks per side, 9 sectors per track (180 KB) (since DOS
2.0)[31]

0xFD

5.25-inch double sided, 40 tracks per side, 9 sectors per track (360 KB) (since DOS
2.0)[31]

8-inch double sided, 77 tracks per side, 26 sectors per track, 128 bytes per sector
(500.5 KB)
(8-inch double sided, (single and) double density (DOS 1)[31])

0xFE

5.25-inch single sided, 40 tracks per side, 8 sectors per track (160 KB) (since DOS
1.0)[31][34]

8-inch single sided, 77 tracks per side, 26 sectors per track, 128 bytes per sector
(250.25 KB)[30][34]

https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/Sanyo
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/Columbia_Data_Products
https://en.wikipedia.org/wiki/HP_200LX
https://en.wikipedia.org/wiki/Tandy_Corporation

8-inch double sided, 77 tracks per side, 8 sectors per track, 1024 bytes per sector
(1232 KB)[34]

(8-inch single sided, (single and) double density (DOS 1)[31])

0xFF

5.25-inch double sided, 40 tracks per side, 8 sectors per track (320 KB) (since DOS
1.1)[31][34]

Hard disk (Sanyo 55x DS-DOS 2.11 only)[18]

This value must reflect the media descriptor stored (in the entry for cluster 0) in the first
byte of each copy of the FAT. Certain operating systems before DOS 3.2 (86-DOS, MS-
DOS/PC DOS 1.x and MSX-DOS version 1.0) ignore the boot sector parameters
altogether and use the media descriptor value from the first byte of the FAT to choose
among internally pre-defined parameter templates. Must be greater or equal to 0xF0
since DOS 4.0.[11]

On removable drives, DR-DOS will assume the presence of a BPB if this value is greater
or equal to 0xF0,[11] whereas for fixed disks, it must be 0xF8 to assume the presence of
a BPB.

Initially, these values were meant to be used as bit flags; for any removable media without
a recognized BPB format and a media descriptor of either 0xF8 or 0xFA to 0xFF MS-
DOS/PC DOS treats bit 1 as a flag to choose a 9-sectors per track format rather than an
8-sectors format, and bit 0 as a flag to indicate double-sided media.[12] Values 0x00 to
0xEF and 0xF1 to 0xF7 are reserved and must not be used.

0x016 0x0B 2 Logical sectors per File Allocation Table for FAT12/FAT16. FAT32 sets this to 0 and uses
the 32-bit value at offset 0x024 instead.

DOS 3.0 BPB:

The following extensions were documented since DOS 3.0, however, they were already supported by some issues of DOS
2.11.[30] MS-DOS 3.10 still supported the DOS 2.0 format, but could use the DOS 3.0 format as well.

https://en.wikipedia.org/wiki/Sanyo
https://en.wikipedia.org/wiki/86-DOS
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/PC_DOS
https://en.wikipedia.org/wiki/MSX-DOS

Sector
offset

BPB
offset

Length
(bytes) Contents

0x00B 0x00 13 DOS 2.0 BPB

0x018 0x0D 2

Physical sectors per track for disks with INT 13h CHS geometry,[9] e.g., 15 for a
“1.20 MB” (1200 KB) floppy.
A zero entry indicates that this entry is reserved, but not used.

0x01A 0x0F 2

Number of heads for disks with INT 13h CHS geometry,[9] e.g., 2 for a double sided
floppy.
A bug in all versions of MS-DOS/PC DOS up to including 7.10 causes these operating
systems to crash for CHS geometries with 256 heads, therefore almost all BIOSes
choose a maximum of 255 heads only.

A zero entry indicates that this entry is reserved, but not used.

0x01C 0x11 2

Count of hidden sectors preceding the partition that contains this FAT volume. This field
should always be zero on media that are not partitioned. This DOS 3.0 entry is
incompatible with a similar entry at offset 0x01C in BPBs since DOS 3.31.
It must not be used if the logical sectors entry at offset 0x013 is zero.

DOS 3.2 BPB:

Officially, MS-DOS 3.20 still used the DOS 3.0 format, but SYS and FORMAT were adapted to support a 6 bytes longer
format already (of which not all entries were used).

Sector
offset

BPB
offset

Length
(bytes) Contents

0x00B 0x00 19 DOS 3.0 BPB

0x01E 0x13 2

Total logical sectors including hidden sectors. This DOS 3.2 entry is incompatible with a
similar entry at offset 0x020 in BPBs since DOS 3.31.
It must not be used if the logical sectors entry at offset 0x013 is zero.

DOS 3.31 BPB:

Officially introduced with DOS 3.31 and not used by DOS 3.2, some DOS 3.2 utilities were designed to be aware of this new
format already. Official documentation recommends to trust these values only if the logical sectors entry at offset 0x013 is
zero.

https://en.wikipedia.org/wiki/INT_13h

Sector
offset

BPB
offset

Length
(bytes) Contents

0x00B 0x00 13 DOS 2.0 BPB

0x018 0x0D 2

Physical sectors per track for disks with INT 13h CHS geometry,[9] e.g., 18 for a
“1.44 MB” (1440 KB) floppy. Unused for drives, which don't support CHS access any
more. Identical to an entry available since DOS 3.0.
A zero entry indicates that this entry is reserved, but not used. A value of 0 may indicate
LBA-only access, but may cause a divide-by-zero exception in some boot loaders, which
can be avoided by storing a neutral value of 1 here, if no CHS geometry can be
reasonably emulated.

0x01A 0x0F 2

Number of heads for disks with INT 13h CHS geometry,[9] e.g., 2 for a double sided
floppy. Unused for drives, which don't support CHS access any more. Identical to an entry
available since DOS 3.0.
A bug in all versions of MS-DOS/PC DOS up to including 7.10 causes these operating
systems to crash for CHS geometries with 256 heads, therefore almost all BIOSes
choose a maximum of 255 heads only.

A zero entry indicates that this entry is reserved, but not used. A value of 0 may indicate
LBA-only access, but may cause a divide-by-zero exception in some boot loaders, which
can be avoided by storing a neutral value of 1 here, if no CHS geometry can be
reasonably emulated.

0x01C 0x11 4

Count of hidden sectors preceding the partition that contains this FAT volume. This field
should always be zero on media that are not partitioned.[5][6][7] This DOS 3.31 entry is
incompatible with a similar entry at offset 0x01C in DOS 3.0-3.3 BPBs. At least, it can be
trusted if it holds zero, or if the logical sectors entry at offset 0x013 is zero.
If this belongs to an Advanced Active Partition (AAP) selected at boot time, the BPB entry
will be dynamically updated by the enhanced MBR to reflect the "relative sectors" value in
the partition table, stored at offset 0x1B6 in the AAP or NEWLDR MBR, so that it
becomes possible to boot the operating system from EBRs.

(Some GPT boot loaders (like BootDuet) use boot sector offsets 0x1FA–0x1FD to store
the high 4 bytes of a 64-bit hidden sectors value for volumes located outside the first
232−1 sectors.)

0x020 0x15 4

Total logical sectors (if greater than 65535; otherwise, see offset 0x013). This DOS 3.31
entry is incompatible with a similar entry at offset 0x01E in DOS 3.2-3.3 BPBs. Officially,
it must be used only if the logical sectors entry at offset 0x013 is zero, but some
operating systems (some old versions of DR DOS) use this entry also for smaller disks.
For partitioned media, if this and the entry at 0x013 are both 0 (as seen on some DOS
3.x FAT16 volumes), many operating systems (including MS-DOS/PC DOS) will retrieve
the value from the corresponding partition's entry (at offset 0xC) in the MBR instead.

If both of these entries are 0 on volumes using a FAT32 EBPB with signature 0x29,
values exceeding the 4,294,967,295 (232−1) limit (f.e. some DR-DOS volumes with 32-bit
cluster entries) can use a 64-bit entry at offset 0x052 instead.

A simple formula translates a volume's given cluster number CN to a logical sector number LSN:[5][6][7]

https://en.wikipedia.org/wiki/INT_13h
https://en.wikipedia.org/wiki/Advanced_Active_Partition
https://en.wikipedia.org/wiki/Master_Boot_Record#MBRAAP_OFS_1B6h
https://en.wikipedia.org/wiki/Extended_Boot_Record
https://en.wikipedia.org/wiki/GUID_Partition_Table
https://en.wikipedia.org/wiki/Master_boot_record#PTE_OFS_Ch
https://en.wikipedia.org/wiki/Master_Boot_Record
https://en.wikipedia.org/wiki/DR-DOS

1. Determine (once) SSA=RSC+FN×SF+ceil((32×RDE)/SS), where the reserved sector count RSC is stored at offset
0x00E, the number of FATsFN at offset 0x010, the sectors per FAT SF at offset 0x016 (FAT12/FAT16) or 0x024
(FAT32), the root directory entries RDE at offset 0x011, the sector size SS at offset 0x00B, and ceil(x) rounds up to
a whole number.

2. Determine LSN=SSA+(CN−2)×SC, where the sectors per cluster SC are stored at offset 0x00D.

On unpartitioned media the volume's number of hidden sectors is zero and therefore LSN and LBA addresses become the
same for as long as a volume's logical sector size is identical to the underlying medium's physical sector size. Under these
conditions, it is also simple to translate between CHS addresses and LSNs as well:

LSN=SPT×(HN+(NOS×TN))+SN−1, where the sectors per track SPT are stored at offset 0x018, and the number of sides
NOS at offset 0x01A. Track number TN, head number HN, and sector number SN correspond to Cylinder-head-sector: the
formula gives the known CHS to LBA translation.

Further structure used by FAT12 and FAT16 since OS/2 1.0 and DOS 4.0, also known as Extended BIOS Parameter Block
(EBPB) (bytes below sector offset 0x024 are the same as for the DOS 3.31 BPB):

Extended BIOS Parameter Block

https://en.wikipedia.org/wiki/Cylinder-head-sector
https://en.wikipedia.org/wiki/Cylinder-head-sector
https://en.wikipedia.org/wiki/Logical_Block_Addressing
https://en.wikipedia.org/wiki/Extended_BIOS_Parameter_Block

Sector
offset

EBPB
offset

Length
(bytes) Contents

0x00B 0x00 25 DOS 3.31 BPB

0x024 0x19 1

Physical drive number (0x00 for (first) removable media, 0x80 for (first) fixed disk as per
INT 13h). Allowed values for possible physical drives depending on BIOS are 0x00-0x7E
and 0x80-0xFE. Values 0x7F and 0xFF are reserved for internal purposes such as
remote or ROM boot and should never occur on disk. Some boot loaders such as the
MS-DOS/PC DOS boot loader use this value when loading the operating system, others
ignore it altogether or use the drive number provided in the DL register by the underlying
boot loader (e.g., with many BIOSes and MBRs). The entry is sometimes changed by
SYS tools or it can be dynamically fixed up by the prior bootstrap loader in order to force
the boot sector code to load the operating system from alternative physical disks than the
default.
A similar entry existed (only) in DOS 3.2 to 3.31 boot sectors at sector offset 0x1FD.

If this belongs to a boot volume, the DR-DOS 7.07 enhanced MBR can be configured
(see NEWLDR offset 0x014) to dynamically update this EBPB entry to the DL value
provided at boot time or the value stored in the partition table. This enables booting off
alternative drives, even when the VBR code ignores the DL value.

0x025 0x1A 1

Reserved;

In some MS-DOS/PC DOS boot code used as a scratchpad for the INT 13h current
head high byte for the assumed 16-bit word at offset 0x024. Some DR-DOS
FAT12/FAT16 boot sectors use this entry as a scratchpad as well, but for different
purposes.
VGACOPY stores a CRC over the system's ROM-BIOS in this location.
Some boot managers use this entry to communicate the desired drive letter under
which the volume should occur to operating systems such as OS/2 by setting bit 7
and specifying the drive number in bits 6-0 (C: = value 0, D: = value 1, ...). Since this
normally affects the in-memory image of the boot sector only, this does not cause
compatibility problems with other uses;
In Windows NT used for CHKDSK flags (bits 7-2 always cleared, bit 1: disk I/O errors
encountered, possible bad sectors, run surface scan on next boot, bit 0: volume is
"dirty" and was not properly unmounted before shutdown, run CHKDSK on next
boot).[32] Should be set to 0 by formatting tools.[5][6][7] See also: Bitflags in the second
cluster entry in the FAT.

0x026 0x1B 1

Extended boot signature. (Should be 0x29[5][6][7][26] to indicate that an EBPB with the
following 3 entries exists (since OS/2 1.2 and DOS 4.0). Can be 0x28 on some OS/2 1.0-
1.1 and PC DOS 3.4 disks indicating an earlier form of the EBPB format with only the
serial number following. MS-DOS/PC DOS 4.0 and higher, OS/2 1.2 and higher as well
as the Windows NT family recognize both signatures accordingly.)

0x027 0x1C 4

Volume ID (serial number)
Typically the serial number "xxxx-xxxx" is created by a 16-bit addition of both DX values
returned by INT 21h/AH=2Ah (get system date)[nb 7] and INT 21h/AH=2Ch (get system
time)[nb 7] for the high word and another 16-bit addition of both CX values for the low
word of the serial number. Alternatively, some DR-DOS disk utilities provide a /# option
to generate a human-readable time stamp "mmdd-hhmm" build from BCD-encoded 8-bit
values for the month, day, hour and minute instead of a serial number.

0x02B 0x20 11 Partition Volume Label, padded with blanks (0x20), e.g., "NO␠NAME␠␠␠␠" Software
changing the directory volume label in the file system should also update this entry, but
not all software does. The partition volume label is typically displayed in partitioning tools

https://en.wikipedia.org/wiki/INT_13h
https://en.wikipedia.org/wiki/DL_register
https://en.wikipedia.org/wiki/Volume_boot_record#IN
https://en.wikipedia.org/wiki/Master_Boot_Record#NEWLDR_OFS_014h
https://en.wikipedia.org/wiki/Volume_Boot_Record
https://en.wikipedia.org/wiki/INT_13h
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/CHKDSK

since it is accessible without mounting the volume. Supported since OS/2 1.2 and MS-
DOS 4.0 and higher.
Not available if the signature at 0x026 is set to 0x28.

This area was used by boot sectors of DOS 3.2 to 3.3 to store a private copy of the Disk
Parameter Table (DPT) instead of using the INT 1Eh pointer to retrieve the ROM table as
in later issues of the boot sector. The re-usage of this location for the mostly cosmetical
partition volume label minimized problems if some older system utilities would still
attempt to patch the former DPT.

0x036 0x2B 8

File system type, padded with blanks (0x20), e.g., "FAT12␠␠␠", "FAT16␠␠␠",
"FAT␠␠␠␠␠"

This entry is meant for display purposes only and must not be used by the operating
system to identify the type of the file system. Nevertheless, it is sometimes used for
identification purposes by third-party software and therefore the values should not differ
from those officially used. Supported since OS/2 1.2 and MS-DOS 4.0 and higher.

Not available if the signature at 0x026 is set to 0x28.

In essence FAT32 inserts 28 bytes into the EBPB, followed by the remaining 26 (or sometimes only 7) EBPB bytes as
shown above for FAT12 and FAT16. Microsoft and IBM operating systems determine the type of FAT file system used on a
volume solely by the number of clusters, not by the used BPB format or the indicated file system type, that is, it is
technically possible to use a "FAT32 EBPB" also for FAT12 and FAT16 volumes as well as a DOS 4.0 EBPB for small FAT32
volumes. Since such volumes were found to be created by Windows operating systems under some odd conditions,[nb 8]

operating systems should be prepared to cope with these hybrid forms.

FAT32 Extended BIOS Parameter Block

https://en.wikipedia.org/w/index.php?title=Disk_Parameter_Table&action=edit&redlink=1

Sector
offset

FAT32
EBPB
offset

Length
(bytes) Contents

0x00B 0x00 25 DOS 3.31 BPB

0x024 0x19 4

Logical sectors per file allocation table (corresponds with the old entry at offset 0x0B in
the DOS 2.0 BPB).
The byte at offset 0x026 in this entry should never become 0x28 or 0x29 in order to
avoid any misinterpretation with the EBPB format under non-FAT32 aware operating
systems.

0x028 0x1D 2

Drive description / mirroring flags (bits 3-0: zero-based number of active FAT, if bit 7
set.[9] If bit 7 is clear, all FATs are mirrored as usual. Other bits reserved and should be
0.)
DR-DOS 7.07 FAT32 boot sectors with dual LBA and CHS support utilize bits 15-8 to
store an access flag and part of a message. These bits contain either bit pattern
0110:1111b (low-case letter 'o', bit 13 set for CHS access) or 0100:1111b (upper-
case letter 'O', bit 13 cleared for LBA access). The byte is also used for the second
character in a potential "No␠IBMBIO␠␠COM" error message (see offset 0x034),
displayed either in mixed or upper case, thereby indicating which access type failed).
Formatting tools or non-DR SYS-type tools may clear these bits, but other disk tools
should leave bits 15-8 unchanged.

0x02A 0x1F 2
Version (defined as 0.0). The high byte of the version number is stored at offset 0x02B,
and the low byte at offset 0x02A.[9] FAT32 implementations should refuse to mount
volumes with version numbers unknown by them.

0x02C 0x21 4

Cluster number of root directory start, typically 2 (first cluster[35]) if it contains no bad
sector. (Microsoft's FAT32 implementation imposes an artificial limit of 65,535 entries per
directory, whilst many third-party implementations do not.)
A cluster value of 0 is not officially allowed and can never indicate a valid root directory
start cluster. Some non-standard FAT32 implementations may treat it as an indicator to
search for a fixed-sized root directory where it would be expected on FAT16 volumes;
see offset 0x011.

0x030 0x25 2

Logical sector number of FS Information Sector, typically 1, i.e., the second of the three
FAT32 boot sectors.
Some FAT32 implementations support a slight variation of Microsoft's specification in
making the FS Information Sector optional by specifying a value of 0xFFFF[24] (or
0x0000) in this entry. Since logical sector 0 can never be a valid FS Information Sector,
but FS Information Sectors use the same signature as found on many boot sectors, file
system implementations should never attempt to use logical sector 0 as FS Information
sector and instead assume that the feature is unsupported on that particular volume.
Without a FS Information Sector, the minimum allowed logical sector size of FAT32
volumes can be reduced downto 128 bytes for special purposes.

0x032 0x27 2 First logical sector number of a copy of the three FAT32 boot sectors, typically 6.[9]

Since DR-DOS 7.0x FAT32 formatted volumes use a single-sector boot sector, some
volumes formatted under DR-DOS use a value of 2 here.

Values of 0x0000[9] (and/or 0xFFFF[24]) are reserved and indicate that no backup sector
is available.

0x034 0x29 12

Reserved (may be changed to format filler byte 0xF6[nb 2] as an artifact by MS-DOS
FDISK, must be initialized to 0 by formatting tools, but must not be changed by file
system implementations or disk tools later on.)
DR-DOS 7.07 FAT32 boot sectors use these 12 bytes to store the filename of the
"IBMBIO␠␠COM"[nb 9] file to be loaded (up to the first 29,696 bytes or the actual file size,
whatever is smaller) and executed by the boot sector, followed by a terminating NUL
(0x00) character. This is also part of an error message, indicating the actual boot file
name and access method (see offset 0x028).

0x040 0x35 1

Cf. 0x024 for FAT12/FAT16 (Physical Drive Number)
exFAT BPBs are located at sector offset 0x040 to 0x077, overlapping all the remaining
entries of a standard FAT32 EBPB including this one. They can be detected via their
OEM label signature "EXFAT␠␠␠" at sector offset 0x003. In this case, the bytes at
0x00B to 0x03F are normally set to 0x00.

0x041 0x36 1

Cf. 0x025 for FAT12/FAT16 (Used for various purposes; see FAT12/FAT16)
May hold format filler byte 0xF6[nb 2] artifacts after partitioning with MS-DOS FDISK, but
not yet formatted.

0x042 0x37 1

Cf. 0x026 for FAT12/FAT16 (Extended boot signature, 0x29)
Most FAT32 file system implementations do not support an alternative signature of
0x28[20] to indicate a shortened form of the FAT32 EBPB with only the serial number
following (and no Volume Label and File system type entries), but since these 19 mostly
unused bytes might serve different purposes in some scenarios, implementations should
accept 0x28 as an alternative signature and then fall back to use the directory volume
label in the file system instead of in the EBPB for compatibility with potential extensions.

0x043 0x38 4 Cf. 0x027 for FAT12/FAT16 (Volume ID)

0x047 0x3C 11
Cf. 0x02B for FAT12/FAT16 (Volume Label)
Not available if the signature at offset 0x042 is set to 0x28.

0x052 0x47 8

Cf. 0x036 for FAT12/FAT16 (File system type, padded with blanks (0x20), e.g.,
"FAT32␠␠␠").

Not available if the signature at 0x042 is set to 0x28.

If both total logical sectors entries at offset 0x020 and 0x013 are 0 on volumes using a
FAT32 EBPB with signature 0x29, volumes with more than 4,294,967,295 (232-1)
sectors (f.e. some DR-DOS volumes with 32-bit cluster entries) can use this entry as 64-
bit total logical sectors entry instead. In this case, the OEM label at sector offset 0x003
may be retrieved as new-style file system type instead.

Exceptions

https://en.wikipedia.org/wiki/IBMBIO.COM
https://en.wikipedia.org/wiki/ExFAT_BPB
https://en.wikipedia.org/wiki/ExFAT
https://en.wikipedia.org/wiki/DR-DOS

Versions of DOS before 3.2 totally or partially relied on the media descriptor byte in the BPB or the FAT ID byte in cluster
0 of the first FAT in order to determine FAT12 diskette formats even if a BPB is present. Depending on the FAT ID found
and the drive type detected they default to use one of the following BPB prototypes instead of using the values actually
stored in the BPB.[nb 3]

Originally, the FAT ID was meant to be a bit flag with all bits set except for bit 2 cleared to indicate an 80 track (vs. 40
track) format, bit 1 cleared to indicate a 9 sector (vs. 8 sector) format, and bit 0 cleared to indicate a single-sided (vs.
double-sided) format,[12] but this scheme was not followed by all OEMs and became obsolete with the introduction of hard
disks and high-density formats. Also, the various 8-inch formats supported by 86-DOS and MS-DOS do not fit this
scheme.

https://en.wikipedia.org/wiki/86-DOS

FAT ID
(compare
with media
ID at BPB
offset
0x0A)[27][28]

0xFF 0xFE 0xFD 0xFC

Size 8" 5.25" 8" 8" 5.25" 8" 8" 5.25" 5.25"

Density ? DD
48tpi SD DD DD

48tpi SD SD DD
48tpi

DD
48tpi

Modulation ? MFM FM MFM MFM FM FM MFM MFM

Formatted
capacity
(KB)

? 320 250
("old")[30][34] 1200 160 250

("new")[30][34] 500 360 180

Cylinders
(CHS) 77 40 77 77 40 77 77 40 40

Physical
sectors /
track
(BPB offset
0x0D)

? 8 26 8 8 26 26 9 9

Number of
heads
(BPB offset
0x0F)

? 2 1[30][34] 2[12][27][34]

(1) 1 1[12][30][34] 2[27] 2 1

Byte
payload /
physical
sector

? 512 128 1024 512 128 128 512 512

Bytes /
logical
sector
(BPB offset
0x00)

? 512 128 1024 512 128 128 512 512

Logical
sectors /
cluster
(BPB offset
0x02)

? 2 4 1 1 4 4 2 1

Reserved
logical
sectors
(BPB offset
0x03)

? 1 1[30][34] 1 1 4[30][34] 4 1 1

Number of
FATs
(BPB offset
0x05)

? 2 2 2 2 2 2 2 2

Root
directory
entries
(BPB offset
0x06)

? 112 (7
sectors)

68 (17
sectors)

192 (6
sectors)

64 (4
sectors)

68 (17
sectors)

68 (17
sectors)

112 (7
sectors)

64 (4
sectors)

Total logical ? 640 2002[30][34] 1232[27][34] 320 2002[12][30][34] 4004[27] 720 360

Microsoft recommends to distinguish between the two 8-inch formats for FAT ID 0xFE by trying to read of a single-
density address mark. If this results in an error, the medium must be double-density.[28]

The table does not list a number of incompatible 8-inch and 5.25-inch FAT12 floppy formats supported by 86-DOS, which
differ either in the size of the directory entries (16 bytes vs. 32 bytes) or in the extent of the reserved sectors area (several
whole tracks vs. one logical sector only).

The implementation of a single-sided 315 KB FAT12 format used in MS-DOS for the Apricot PC and F1e[36] had a different
boot sector layout, to accommodate that computer's non-IBM compatible BIOS. The jump instruction and OEM name
were omitted, and the MS-DOS BPB parameters (offsets 0x00B-0x017 in the standard boot sector) were located at offset

sectors
(BPB offset
0x08)

(616[12])

Logical
sectors /
FAT
(BPB offset
0x0B)

? 1 6[30][34] 2 1 6[30][34] 6?[27] 2 2

Hidden
sectors
(BPB offset
0x11)

? 0 3[27] (0[12]) 0 0 0 0 0 0

Total
number of
clusters

? 315 497 1227 313 ? 997?[27] 354 351

Logical
sector order ? ? ? ? ? ? ? ? ?

Sector
mapping ?

First
physical
sector
(CHS)

? 1 1 1 1 1 1 1 1

DRIVER.SYS
/F:n

? 0 3 4 0 ? 3 0 0

BPB
Presence ? ? ? ? ? ? ? ? ?

Support ? ?[30][34]

se
ct

or
+

he
ad

+
tra

ck
+

se
ct

or
+

he
ad

+
tra

ck
+

se
ct

or
+

he
ad

+
tra

ck
+

se
ct

or
+

he
ad

+
tra

ck
+

se
ct

or
+

tra
ck

+

se
ct

or
+

he
ad

+
tra

ck
+

se
ct

or
+

he
ad

+
tra

ck
+

se
ct

or
+

he
ad

+
tra

ck
+

D
O

S
1.

1[3
4]

D
O

S
1.

0[3
0]

[3
4]

D
O

S
2.

0

D
O

S
1.

0[3
4]

D
O

S
2.

0

D
O

S
2.

0

D
O

S
2.

0

https://en.wikipedia.org/wiki/86-DOS_disk_formats
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Apricot_PC
https://en.wikipedia.org/w/index.php?title=Apricot_F1e&action=edit&redlink=1

0x050. The Portable, F1, PC duo and Xi FD supported a non-standard double-sided 720 KB FAT12 format instead.[36] The
differences in the boot sector layout and media IDs made these formats incompatible with many other operating systems.
The geometry parameters for these formats are:

315 KB: Bytes per logical sector: 512 bytes, logical sectors per cluster: 1, reserved logical sectors: 1, number of FATs:
2, root directory entries: 128, total logical sectors: 630, FAT ID: 0xFC, logical sectors per FAT: 2, physical sectors per
track: 9, number of heads: 1.[36][37]

720 KB: Bytes per logical sector: 512 bytes, logical sectors per cluster: 2, reserved logical sectors: 1, number of FATs:
2, root directory entries: 176, total logical sectors: 1440, FAT ID: 0xFE, logical sectors per FAT: 3, physical sectors per
track: 9, number of heads: 2.[36]

Later versions of Apricot MS-DOS gained the ability to read and write disks with the standard boot sector in addition to
those with the Apricot one. These formats were also supported by DOS Plus 2.1e/g for the Apricot ACT series.

The DOS Plus adaptation for the BBC Master 512 supported two FAT12 formats on 80-track, double-sided, double-density
5.25" drives, which did not use conventional boot sectors at all. 800 KB data disks omitted a boot sector and began with a
single copy of the FAT.[37] The first byte of the relocated FAT in logical sector 0 was used to determine the disk's capacity.
640 KB boot disks began with a miniature ADFS file system containing the boot loader, followed by a single FAT.[37][38]

Also, the 640 KB format differed by using physical CHS sector numbers starting with 0 (not 1, as common) and
incrementing sectors in the order sector-track-head (not sector-head-track, as common).[38] The FAT started at the
beginning of the next track. These differences make these formats unrecognizable by other operating systems. The
geometry parameters for these formats are:

800 KB: Bytes per logical sector: 1024 bytes, logical sectors per cluster: 1, reserved logical sectors: 0, number of
FATs: 1, root directory entries: 192, total logical sectors: 800, FAT ID: 0xFD, logical sectors per FAT: 2, physical
sectors per track: 5, number of heads: 2.[37][38]

640 KB: Bytes per logical sector: 256 bytes, logical sectors per cluster: 8, reserved logical sectors: 16, number of
FATs: 1, root directory entries: 112, total logical sectors: 2560, FAT ID: 0xFF, logical sectors per FAT: 2, physical
sectors per track: 16, number of heads: 2.[37][38]

DOS Plus for the Master 512 could also access standard PC disks formatted to 180 KB or 360 KB, using the first byte of the
FAT in logical sector 1 to determine the capacity.

The DEC Rainbow 100 (all variations) supported one FAT12 format on 80-track, single-sided, quad-density 5.25" drives.
The first two tracks were reserved for the boot loader, but didn't contain an MBR nor a BPB (MS-DOS used a static in-
memory BPB instead). The boot sector (track 0, side 0, sector 1) was Z80 code beginning with DI 0xF3. The 8088
bootstrap was loaded by the Z80. Track 1, side 0, sector 2 starts with the Media/FAT ID byte 0xFA. Unformatted disks use
0xE5 instead. The file system starts on track 2, side 0, sector 1. There are 2 copies of the FAT and 96 entries in the root
directory. In addition, there is a physical to logical track mapping to effect a 2:1 sector interleaving. The disks were
formatted with the physical sectors in order numbered 1 to 10 on each track after the reserved tracks, but the logical
sectors from 1 to 10 were stored in physical sectors 1, 6, 2, 7, 3, 8, 4, 9, 5, 10.[39]

The "FS Information Sector" was introduced in FAT32[40] for speeding up access times of certain operations (in particular,
getting the amount of free space). It is located at a logical sector number specified in the FAT32 EBPB boot record at
position 0x030 (usually logical sector 1, immediately after the boot record itself).

FS Information Sector

https://en.wikipedia.org/wiki/Apricot_Portable
https://en.wikipedia.org/w/index.php?title=Apricot_F1&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Apricot_PC_duo&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Apricot_Xi_FD&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Apricot_MS-DOS&action=edit&redlink=1
https://en.wikipedia.org/wiki/DOS_Plus
https://en.wikipedia.org/wiki/BBC_Master_512
https://en.wikipedia.org/wiki/Advanced_Disc_Filing_System

Byte
offset

Length
(bytes) Contents

0x000 4

FS information sector signature (0x52 0x52 0x61 0x41 = "RRaA")
For as long as the FS Information Sector is located in logical sector 1, the location, where the FAT
typically started in FAT12 and FAT16 file systems (with only one reserved sectors), the presence of
this signature ensures that early versions of DOS will never attempt to mount a FAT32 volume, as
they expect the values in cluster 0 and cluster 1 to follow certain bit patterns, which are not met by
this signature.

0x004 480 Reserved (byte values should be set to 0x00 during format, but not be relied upon and never
changed later on)

0x1E4 4 FS information sector signature (0x72 0x72 0x41 0x61 = "rrAa")

0x1E8 4
Last known number of free data clusters on the volume, or 0xFFFFFFFF if unknown. Should be set
to 0xFFFFFFFF during format and updated by the operating system later on. Must not be
absolutely relied upon to be correct in all scenarios. Before using this value, the operating system
should sanity check this value to be at least smaller or equal to the volume's count of clusters.

0x1EC 4

Number of the most recently known to be allocated data cluster. Should be set to 0xFFFFFFFF
during format and updated by the operating system later on. With 0xFFFFFFFF the system should
start at cluster 0x00000002. Must not be absolutely relied upon to be correct in all scenarios.
Before using this value, the operating system should sanity check this value to be a valid cluster
number on the volume.

0x1F0 12 Reserved (byte values should be set to 0x00 during format, but not be relied upon and never
changed later on)

0x1FC 4 FS information sector signature (0x00 0x00 0x55 0xAA)[9][nb 4] (All four bytes should match
before the contents of this sector should be assumed to be in valid format.)

The sector's data may be outdated and not reflect the current media contents, because not all operating systems update or
use this sector, and even if they do, the contents is not valid when the medium has been ejected without properly
unmounting the volume or after a power-failure. Therefore, operating systems should first inspect a volume's optional
shutdown status bitflags residing in the FAT entry of cluster 1 or the FAT32 EBPB at offset 0x041 and ignore the data
stored in the FS information sector, if these bitflags indicate that the volume was not properly unmounted before. This
does not cause any problems other than a possible speed penalty for the first free space query or data cluster allocation; see
fragmentation.

If this sector is present on a FAT32 volume, the minimum allowed logical sector size is 512 bytes, whereas otherwise it
would be 128 bytes. Some FAT32 implementations support a slight variation of Microsoft's specification by making the FS
information sector optional by specifying a value of 0xFFFF[24] (or 0x0000) in the entry at offset 0x030.

A volume's data area is divided up into identically sized clusters, small blocks of contiguous space. Cluster sizes vary
depending on the type of FAT file system being used and the size of the partition; typically cluster sizes lie somewhere
between 2 KB and 32 KB.

File Allocation Table

Cluster map

https://en.wikipedia.org/wiki/Aaron_R._Reynolds
https://en.wikipedia.org/wiki/Aaron_R._Reynolds

Each file may occupy one or more of these clusters depending on its size; thus, a file is represented by a chain of these
clusters (referred to as a singly linked list). However these clusters are not necessarily stored adjacent to one another on
the disk's surface but are often instead fragmented throughout the Data Region.

Each version of the FAT file system uses a different size for FAT entries. Smaller numbers result in a smaller FAT, but
waste space in large partitions by needing to allocate in large clusters.

The FAT12 file system uses 12 bits per FAT entry, thus two entries span 3 bytes. It is consistently little-endian: if those
three bytes are considered as one little-endian 24-bit number, the 12 least significant bits represent the first entry (f.e.
cluster 0) and the 12 most significant bits the second (f.e cluster 1). In other words, while the low eight bits of the first
cluster in the row are stored in the first byte, the top four bits are stored in the low nibble of the second byte, whereas the
low four bits of the subsequent cluster in the row are stored in the high nibble of the second byte and its higher eight bits in
the third byte.

Example of FAT12 table start with several cluster chains

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

+0000 F0 FF FF 03 40 00 05 60 00 07 80 00 FF AF 00 14

+0010 C0 00 0D E0 00 0F 00 01 11 F0 FF 00 F0 FF 15 60

+0020 01 19 70 FF F7 AF 01 FF 0F 00 00 70 FF 00 00 00

FAT ID / endianness marker (in reserved cluster #0), with 0xF0 indicating a volume on a non-partitioned superfloppy
drive (must be 0xF8 for partitioned disks)
End of chain indicator / maintenance flags (in reserved cluster #1)
Second chain (7 clusters) for a non-fragmented file (here: #2, #3, #4, #5, #6, #7, #8)
Third chain (7 clusters) for a fragmented, possibly grown file (here: #9, #A, #14, #15, #16, #19, #1A)
Fourth chain (7 clusters) for a non-fragmented, possibly truncated file (here: #B, #C, #D, #E, #F, #10, #11)
Empty clusters (here: #12, #1B, #1C, #1E, #1F)
Fifth chain (1 cluster) for a sub-directory (here: #13)
Bad clusters (3 clusters) (here: #17, #18, #1D)

The FAT16 file system uses 16 bits per FAT entry, thus one entry spans two bytes in little-endian byte order:

Example of FAT16 table start with several cluster chains

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

+0000 F0 FF FF FF 03 00 04 00 05 00 06 00 07 00 08 00

+0010 FF FF 0A 00 14 00 0C 00 0D 00 0E 00 0F 00 10 00

+0020 11 00 FF FF 00 00 FF FF 15 00 16 00 19 00 F7 FF

+0030 F7 FF 1A 00 FF FF 00 00 00 00 F7 FF 00 00 00 00

The FAT32 file system uses 32 bits per FAT entry, thus one entry spans four bytes in little-endian byte order. The four top
bits of each entry are reserved for other purposes, cleared during format and should not be changed otherwise. They must
be masked off before interpreting the entry as 28-bit cluster address.

https://en.wikipedia.org/wiki/Singly_linked_list
https://en.wikipedia.org/wiki/FAT12
https://en.wikipedia.org/wiki/Little-endian
https://en.wikipedia.org/wiki/Superfloppy
https://en.wikipedia.org/wiki/FAT16
https://en.wikipedia.org/wiki/FAT32

Example of FAT32 table start with several cluster chains

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

+0000 F0 FF FF 0F FF FF FF 0F FF FF FF 0F 04 00 00 00

+0010 05 00 00 00 06 00 00 00 07 00 00 00 08 00 00 00

+0020 FF FF FF 0F 0A 00 00 00 14 00 00 00 0C 00 00 00

+0030 0D 00 00 00 0E 00 00 00 0F 00 00 00 10 00 00 00

+0040 11 00 00 00 FF FF FF 0F 00 00 00 00 FF FF FF 0F

+0050 15 00 00 00 16 00 00 00 19 00 00 00 F7 FF FF 0F

+0060 F7 FF FF 0F 1A 00 00 00 FF FF FF 0F 00 00 00 00

+0070 00 00 00 00 F7 FF FF 0F 00 00 00 00 00 00 00 00

First chain (1 cluster) for the root directory, pointed to by an entry in the FAT32 BPB (here: #2)
Second chain (6 clusters) for a non-fragmented file (here: #3, #4, #5, #6, #7, #8)

The File Allocation Table (FAT) is a contiguous number of sectors immediately following the area of reserved sectors. It
represents a list of entries that map to each cluster on the volume. Each entry records one of five things:

the cluster number of the next cluster in a chain
a special end of cluster-chain (EOC) entry that indicates the end of a chain
a special entry to mark a bad cluster
a zero to note that the cluster is unused

For very early versions of DOS to recognize the file system, the system must have been booted from the volume or the
volume's FAT must start with the volume's second sector (logical sector 1 with physical CHS address 0/0/2 or LBA address
1), that is, immediately following the boot sector. Operating systems assume this hard-wired location of the FAT in order to
find the FAT ID in the FAT's cluster 0 entry on DOS 1.0-1.1 FAT diskettes, where no valid BPB is found.

The first two entries in a FAT store special values:

The first entry (cluster 0 in the FAT) holds the FAT ID since MS-DOS 1.20 and PC DOS 1.1 (allowed values 0xF0-0xFF
with 0xF1-0xF7 reserved) in bits 7-0, which is also copied into the BPB of the boot sector, offset 0x015 since DOS 2.0.
The remaining 4 bits (if FAT12), 8 bits (if FAT16) or 20 bits (if FAT32) of this entry are always 1. These values were
arranged so that the entry would also function as an "trap-all" end-of-chain marker for all data clusters holding a value of
zero. Additionally, for FAT IDs other than 0xFF (and 0x00) it is possible to determine the correct nibble and byte order (to
be) used by the file system driver, however, the FAT file system officially uses a little-endian representation only and there
are no known implementations of variants using big-endian values instead. 86-DOS 0.42 up to MS-DOS 1.14 used hard-
wired drive profiles instead of a FAT ID, but used this byte to distinguish between media formatted with 32-byte or 16-byte
directory entries, as they were used prior to 86-DOS 0.42.

The second entry (cluster 1 in the FAT) nominally stores the end-of-cluster-chain marker as used by the formater, but
typically always holds 0xFFF / 0xFFFF / 0x0FFFFFFF, that is, with the exception of bits 31-28 on FAT32 volumes these
bits are normally always set. Some Microsoft operating systems, however, set these bits if the volume is not the volume
holding the running operating system (that is, use 0xFFFFFFFF instead of 0x0FFFFFFF here).[41] (In conjunction with
alternative end-of-chain markers the lowest bits 2-0 can become zero for the lowest allowed end-of-chain marker 0xFF8 /
0xFFF8 / 0x?FFFFFF8; bit 3 should be reserved as well given that clusters 0xFF0 / 0xFFF0 / 0x?FFFFFF0 and higher

Special entries

https://en.wikipedia.org/wiki/MS-DOS_1.20
https://en.wikipedia.org/wiki/PC_DOS_1.1
https://en.wikipedia.org/wiki/Little-endian
https://en.wikipedia.org/wiki/Big-endian
https://en.wikipedia.org/wiki/86-DOS_0.42
https://en.wikipedia.org/wiki/MS-DOS_1.14

are officially reserved. Some operating systems may not be able to mount some volumes if any of these bits are not set,
therefore the default end-of-chain marker should not be changed.) For DOS 1 and 2, the entry was documented as reserved
for future use.

Since DOS 7.1 the two most-significant bits of this cluster entry may hold two optional bitflags representing the current
volume status on FAT16 and FAT32, but not on FAT12 volumes. These bitflags are not supported by all operating systems,
but operating systems supporting this feature would set these bits on shutdown and clear the most significant bit on
startup:
If bit 15 (on FAT16) or bit 27 (on FAT32)[42] is not set when mounting the volume, the volume was not properly
unmounted before shutdown or ejection and thus is in an unknown and possibly "dirty" state.[29] On FAT32 volumes, the
FS Information Sector may hold outdated data and thus should not be used. The operating system would then typically run
SCANDISK or CHKDSK on the next startup[nb 10][42] (but not on insertion of removable media) to ensure and possibly
reestablish the volume's integrity.
If bit 14 (on FAT16) or bit 26 (on FAT32)[42] is cleared, the operating system has encountered disk I/O errors on
startup,[42] a possible indication for bad sectors. Operating systems aware of this extension will interpret this as a
recommendation to carry out a surface scan (SCANDISK) on the next boot.[29][42] (A similar set of bitflags exists in the
FAT12/FAT16 EBPB at offset 0x1A or the FAT32 EBPB at offset 0x36. While the cluster 1 entry can be accessed by file
system drivers once they have mounted the volume, the EBPB entry is available even when the volume is not mounted and
thus easier to use by disk block device drivers or partitioning tools.)

If the number of FATs in the BPB is not set to 2, the second cluster entry in the first FAT (cluster 1) may also reflect the
status of a TFAT volume for TFAT-aware operating systems. If the cluster 1 entry in that FAT holds the value 0, this may
indicate that the second FAT represents the last known valid transaction state and should be copied over the first FAT,
whereas the first FAT should be copied over the second FAT if all bits are set.

Some non-standard FAT12/FAT16 implementations utilize the cluster 1 entry to store the starting cluster of a variable-
sized root directory (typically 2[35]). This may occur when the number of root directory entries in the BPB holds a value of
0 and no FAT32 EBPB is found (no signature 0x29 or 0x28 at offset 0x042).[25] This extension, however, is not supported
by mainstream operating systems,[25] as it is conflictive with other possible uses of the cluster 1 entry. Most conflicts can
be ruled out if this extension is only allowed for FAT12 with less than 0xFEF and FAT16 volumes with less than 0x3FEF
clusters and 2 FATs.

Because these first two FAT entries store special values, there are no data clusters 0 or 1. The first data cluster (after the
root directory if FAT12/FAT16) is cluster 2,[35] and cluster 2 is by definition the first cluster in the data area.

FAT entry values:

Cluster values

https://en.wikipedia.org/wiki/SCANDISK
https://en.wikipedia.org/wiki/CHKDSK
https://en.wikipedia.org/wiki/SCANDISK
https://en.wikipedia.org/wiki/TFAT

FAT12 FAT16 FAT32 Description

0x000 0x0000 0x?0000000

Free Cluster; also used by DOS to refer to the parent directory starting
cluster in ".." entries of subdirectories of the root directory on
FAT12/FAT16 volumes.[10][11]

Otherwise, if this value occurs in cluster chains (e.g. in directory entries
of zero length or deleted files), file system implementations should treat
this like an end-of-chain marker.[12]

0x001 0x0001 0x?0000001

Reserved for internal purposes; MS-DOS/PC DOS use this cluster value
as a temporary non-free cluster indicator while constructing cluster
chains during file allocation (only seen on disk if there is a crash or power
failure in the middle of this process).[10][11]

If this value occurs in on-disk cluster chains, file system implementations
should treat this like an end-of-chain marker.

0x002 -
0xFEF

0x0002 -
0xFFEF
(0x0002 -
0x7FFF)

0x?0000002 -
0x?FFFFFEF

Used as data clusters; value points to next cluster. MS-DOS/PC DOS
accept values up to 0xFEF / 0xFFEF / 0x0FFFFFEF (sometimes more;
see below), whereas for Atari GEMDOS only values up to 0x7FFF are
allowed on FAT16 volumes.

0xFF0[nb 11] -
0xFF5
(0xFF1 -
0xFF5)

0xFFF0 -
0xFFF5

0x?FFFFFF0 -
0x?FFFFFF5

Reserved in some contexts,[43] or also used[5][6][7][9][44] as data clusters
in some non-standard systems. Volume sizes which would utilize these
values as data clusters should be avoided, but if these values occur in
existing volumes, the file system must treat them as normal data clusters
in cluster-chains (ideally applying additional sanity checks), similar to
what MS-DOS, PC DOS and DR-DOS do,[11] and should avoid allocating
them for files otherwise.
MS-DOS/PC DOS 3.3 and higher treats a value of 0xFF0[nb 11][11] on
FAT12 (but not on FAT16 or FAT32) volumes as additional end-of-chain
marker similar to 0xFF8-0xFFF.[11] For compatibility with MS-
DOS/PC DOS, file systems should avoid to use data cluster 0xFF0 in
cluster chains on FAT12 volumes (that is, treat it as a reserved cluster
similar to 0xFF7). (NB. The correspondence of the low byte of the cluster
number with the FAT ID and media descriptor values is the reason, why
these cluster values are reserved.)

0xFF6 0xFFF6 0x?FFFFFF6

Reserved; do not use.[5][6][7][9][26][44] (NB. Corresponds with the default
format filler value 0xF6 on IBM compatible machines.) Volumes should
not be created which would utilize this value as data cluster, but if this
value occurs in existing volumes, the file system must treat it as normal
data cluster in cluster-chains (ideally applying additional sanity checks),
and should avoid to allocate it for files otherwise.[12]

0xFF7 0xFFF7 0x?FFFFFF7 Bad sector in cluster or reserved cluster (since DOS 2.0).
The cutover values for the maximum number of clusters for FAT12 and
FAT16 file systems are defined as such that the highest possible data
cluster values (0xFF5 and 0xFFF5,[11] respectively) will always be
smaller than this value.[11] Therefore, this value cannot normally occur in
cluster-chains, but if it does, it may be treated as a normal data cluster,
since 0xFF7 could have been a non-standard data cluster on FAT12
volumes before the introduction of the bad cluster marker with DOS 2.0
or the introduction of FAT16 with DOS 3.0,[12] and 0xFFF7 could have

been a non-standard data cluster on FAT16 volumes before the
introduction of FAT32 with DOS 7.10. Theoretically, 0x0FFFFFF7 can be
part of a valid cluster chain on FAT32 volumes, but disk utilities should
avoid creating FAT32 volumes, where this condition could occur. The file
system should avoid to allocate this cluster for files.[12]

Disk utilities must not attempt to restore "lost clusters" holding this value
in the FAT, but count them as bad clusters.

0xFF8 -
0xFFF (and
optionally
0xFF0;[nb 11]

see note)

0xFFF8 -
0xFFFF

0x?FFFFFF8 -
0x?FFFFFFF

Last cluster in file (EOC). File system implementations must treat all
these values as end-of-chain marker at the same time.[12] Most file
system implementations (including 86-DOS, MS-DOS, PC DOS and DR-
DOS) use 0xFFF[12] / 0xFFFF[12] / 0x0FFFFFFF as end-of-file marker
when allocating files, but versions of Linux before 2.5.40 used 0xFF8 /
0xFFF8 / 0x0FFFFFF8.[45] Versions of mkdosfs (dosfstools up to 3.0.26)
continue to use 0x0FFFFFF8 for the root directory on FAT32 volumes,
whereas some disk repair and defragment tools utilize other values in the
set (e.g., SCANDISK may use 0xFF8 / 0xFFF8 / 0x0FFFFFF8 instead).
While in the original 8-bit FAT implementation in Microsoft's Standalone
Disk BASIC different end markers (0xC0..0xCD) were used to indicate
the number of sectors (0 to 13) used up in the last cluster occupied by a
file, different end markers were repurposed under DOS to indicate
different types of media,[12] with the currently used end marker indicated
in the cluster 1 entry, however, this concept does not seem to have been
broadly utilized in practice—and to the extent that in some scenarios
volumes may not be recognized by some operating systems, if some of
the low-order bits of the value stored in cluster 1 are not set. Also, some
faulty file system implementations only accept 0xFFF / 0xFFFF / 0x?
FFFFFFF as valid end-of-chain marker.
File system implementations should check cluster values in cluster-
chains against the maximum allowed cluster value calculated by the
actual size of the volume and treat higher values as if they were end-of-
chain markers as well. (The low byte of the cluster number conceptually
corresponds with the FAT ID and media descriptor values;[12] see note
above for MS-DOS/PC DOS special usage of 0xFF0[nb 11] on FAT12
volumes.[11])

Despite its name FAT32 uses only 28 bits of the 32 possible bits. The upper 4 bits are usually zero, but are reserved and
should be left untouched. A standard conformant FAT32 file system driver or maintenance tool must not rely on the upper
4 bits to be zero and it must strip them off before evaluating the cluster number in order to cope with possible future
expansions where these bits may be used for other purposes. They must not be cleared by the file system driver when
allocating new clusters, but should be cleared during a reformat.

The FAT12, FAT16, FAT16B, and FAT32 variants of the FAT file systems have clear limits based on the number of clusters
and the number of sectors per cluster (1, 2, 4, ..., 128). For the typical value of 512 bytes per sector:

FAT12 requirements : 3 sectors on each copy of FAT for every 1,024 clusters
FAT16 requirements : 1 sector on each copy of FAT for every 256 clusters
FAT32 requirements : 1 sector on each copy of FAT for every 128 clusters

Size limits

https://en.wikipedia.org/wiki/Mkdosfs
https://en.wikipedia.org/w/index.php?title=Dosfstools&action=edit&redlink=1
https://en.wikipedia.org/wiki/8-bit_FAT
https://en.wikipedia.org/wiki/Standalone_Disk_BASIC

FAT12 range : 1 to 4,084 clusters : 1 to 12 sectors per copy of FAT
FAT16 range : 4,085 to 65,524 clusters : 16 to 256 sectors per copy of FAT
FAT32 range : 65,525 to 268,435,444 clusters : 512 to 2,097,152 sectors per copy of FAT

FAT12 minimum : 1 sector per cluster × 1 clusters = 512 bytes (0.5 KB)
FAT16 minimum : 1 sector per cluster × 4,085 clusters = 2,091,520 bytes (2,042.5 KB)
FAT32 minimum : 1 sector per cluster × 65,525 clusters = 33,548,800 bytes (32,762.5 KB)

FAT12 maximum : 64 sectors per cluster × 4,084 clusters = 133,824,512 bytes (≈ 127 MB)
[FAT12 maximum : 128 sectors per cluster × 4,084 clusters = 267,694,024 bytes (≈ 255 MB)]

FAT16 maximum : 64 sectors per cluster × 65,524 clusters = 2,147,090,432 bytes (≈2,047 MB)
[FAT16 maximum : 128 sectors per cluster × 65,524 clusters = 4,294,180,864 bytes (≈4,095 MB)]

FAT32 maximum : 8 sectors per cluster × 268,435,444 clusters = 1,099,511,578,624 bytes (≈1,024 GB)
FAT32 maximum : 16 sectors per cluster × 268,173,557 clusters = 2,196,877,778,944 bytes (≈2,046 GB)
[FAT32 maximum : 32 sectors per cluster × 134,152,181 clusters = 2,197,949,333,504 bytes (≈2,047 GB)]
[FAT32 maximum : 64 sectors per cluster × 67,092,469 clusters = 2,198,486,024,192 bytes (≈2,047 GB)]
[FAT32 maximum : 128 sectors per cluster × 33,550,325 clusters = 2,198,754,099,200 bytes (≈2,047 GB)]

Legend: 268435444+3 is 0x0FFFFFF7, because FAT32 version 0 uses only 28 bits in the 32-bit
cluster numbers, cluster numbers 0x0FFFFFF7 up to 0x0FFFFFFF flag bad clusters or the end of a
file, cluster number 0 flags a free cluster, and cluster number 1 is not used.[35] Likewise
65524+3 is 0xFFF7 for FAT16, and 4084+3 is 0xFF7 for FAT12. The number of sectors per cluster
is a power of 2 fitting in a single byte, the smallest value is 1 (0x01), the biggest value is 128
(0x80). Lines in square brackets indicate the unusual cluster size 128, and for FAT32 the bigger
than necessary cluster sizes 32 or 64.[46]

Because each FAT32 entry occupies 32 bits (4 bytes) the maximal number of clusters (268435444) requires 2097152 FAT
sectors for a sector size of 512 bytes. 2097152 is 0x200000, and storing this value needs more than two bytes. Therefore,
FAT32 introduced a new 32-bit value in the FAT32 boot sector immediately following the 32-bit value for the total number
of sectors introduced in the FAT16B variant.

The boot record extensions introduced with DOS 4.0 start with a magic 40 (0x28) or 41 (0x29). Typically FAT drivers look
only at the number of clusters to distinguish FAT12, FAT16, and FAT32: the human readable strings identifying the FAT
variant in the boot record are ignored, because they exist only for media formatted with DOS 4.0 or later.

Determining the number of directory entries per cluster is straight forward, each entry occupies 32 bytes, this results in 16
entries per sector for a sector size of 512 bytes. The DOS 5 RMDIR/RD command removes the initial "." (this directory) and
".." (parent directory) entries in subdirectories directly, therefore sector size 32 on a RAM disk is possible for FAT12, but
requires 2 or more sectors per cluster. A FAT12 boot sector without the DOS 4 extensions needs 29 bytes before the first
unnecessary FAT16B 32-bit number of hidden sectors, this leaves three bytes for the (on a RAM disk unused) boot code
and the magic 0x55 0xAA at the end of all boot sectors. On Windows NT the smallest supported sector size is 128.

On Windows NT operating systems the FORMAT command options /A:128K and /A:256K correspond to the maximal
cluster size 0x80 (128) with a sector size 1024 and 2048, respectively. For the common sector size 512 /A:64K yields 128
sectors per cluster.

https://en.wikipedia.org/wiki/RMDIR
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/FORMAT

Both editions of each ECMA-107[5] and ISO/IEC 9293[6][7] specify a Max Cluster Number MAX determined by the formula
MAX=1+trunc((TS-SSA)/SC), and reserve cluster numbers MAX+1 up to 4086 (0xFF6, FAT12) and later 65526
(0xFFF6, FAT16) for future standardization.

Microsoft's EFI FAT32 specification[9] states that any FAT file system with less than 4085 clusters is FAT12, else any FAT
file system with less than 65525 clusters is FAT16, and otherwise it is FAT32. The entry for cluster 0 at the beginning of the
FAT must be identical to the media descriptor byte found in the BPB, whereas the entry for cluster 1 reflects the end-of-
chain value used by the formatter for cluster chains (0xFFF, 0xFFFF or 0x0FFFFFFF). The entries for cluster numbers 0
and 1 end at a byte boundary even for FAT12, e.g., 0xF9FFFF for media descriptor 0xF9.

The first data cluster is 2,[35] and consequently the last cluster MAX gets number MAX+1. This results in data cluster
numbers 2...4085 (0xFF5) for FAT12, 2...65525 (0xFFF5) for FAT16, and 2...268435445 (0x0FFFFFF5) for FAT32.

The only available values reserved for future standardization are therefore 0xFF6 (FAT12) and 0xFFF6 (FAT16). As noted
below "less than 4085" is also used for Linux implementations,[44] or as Microsoft's FAT specification puts it:[9]

when it says <, it does not mean <=. Note also that the numbers are correct. The first number for FAT12 is
4085; the second number for FAT16 is 65525. These numbers and the ‘<’ signs are not wrong.

The FAT file system does not contain built-in mechanisms which prevent newly written files from becoming scattered
across the partition.[47] On volumes where files are created and deleted frequently or their lengths often changed, the
medium will become increasingly fragmented over time.

While the design of the FAT file system does not cause any organizational overhead in disk structures or reduce the
amount of free storage space with increased amounts of fragmentation, as it occurs with external fragmentation, the time
required to read and write fragmented files will increase as the operating system will have to follow the cluster chains in
the FAT (with parts having to be loaded into memory first in particular on large volumes) and read the corresponding data
physically scattered over the whole medium reducing chances for the low-level block device driver to perform multi-sector
disk I/O or initiate larger DMA transfers, thereby effectively increasing I/O protocol overhead as well as arm movement
and head settle times inside the disk drive. Also, file operations will become slower with growing fragmentation as it takes
increasingly longer for the operating system to find files or free clusters.

Other file systems, e.g., HPFS or exFAT, use free space bitmaps that indicate used and available clusters, which could then
be quickly looked up in order to find free contiguous areas. Another solution is the linkage of all free clusters into one or
more lists (as is done in Unix file systems). Instead, the FAT has to be scanned as an array to find free clusters, which can
lead to performance penalties with large disks.

In fact, seeking for files in large subdirectories or computing the free disk space on FAT volumes is one of the most
resource intensive operations, as it requires reading the directory tables or even the entire FAT linearly. Since the total
amount of clusters and the size of their entries in the FAT was still small on FAT12 and FAT16 volumes, this could still be
tolerated on FAT12 and FAT16 volumes most of the time, considering that the introduction of more sophisticated disk
structures would have also increased the complexity and memory footprint of real-mode operating systems with their
minimum total memory requirements of 128 KB or less (such as with DOS) for which FAT has been designed and
optimized originally.

Fragmentation

https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Fragmentation_(computing)
https://en.wikipedia.org/wiki/External_fragmentation
https://en.wikipedia.org/wiki/High_Performance_File_System
https://en.wikipedia.org/wiki/ExFAT
https://en.wikipedia.org/wiki/Free_space_bitmap
https://en.wikipedia.org/wiki/Unix

With the introduction of FAT32, long seek and scan times became more apparent, particularly on very large volumes. A
possible justification suggested by Microsoft's Raymond Chen for limiting the maximum size of FAT32 partitions created
on Windows was the time required to perform a "DIR" operation, which always displays the free disk space as the last
line.[48] Displaying this line took longer and longer as the number of clusters increased. FAT32 therefore introduced a
special file system information sector where the previously computed amount of free space is preserved over power cycles,
so that the free space counter needs to be recalculated only when a removable FAT32 formatted medium gets ejected
without first unmounting it or if the system is switched off without properly shutting down the operating system, a
problem mostly visible with pre-ATX-style PCs, on plain DOS systems and some battery-powered consumer products.

With the huge cluster sizes (16 KB, 32 KB, 64 KB) forced by larger FAT partitions, internal fragmentation in form of disk
space waste by file slack due to cluster overhang (as files are rarely exact multiples of cluster size) starts to be a problem as
well, especially when there are a great many small files.

Various optimizations and tweaks to the implementation of FAT file system drivers, block device drivers and disk tools
have been devised to overcome most of the performance bottlenecks in the file system's inherent design without having to
change the layout of the on-disk structures.[49][50] They can be divided into on-line and off-line methods and work by
trying to avoid fragmentation in the file system in the first place, deploying methods to better cope with existing
fragmentation, and by reordering and optimizing the on-disk structures. With optimizations in place, the performance on
FAT volumes can often reach that of more sophisticated file systems in practical scenarios, while at the same time
retaining the advantage of being accessible even on very small or old systems.

DOS 3.0 and higher will not immediately reuse disk space of deleted files for new allocations but instead seek for
previously unused space before starting to use disk space of previously deleted files as well. This not only helps to maintain
the integrity of deleted files for as long as possible but also speeds up file allocations and avoids fragmentation, since never
before allocated disk space is always unfragmented. DOS accomplishes this by keeping a pointer to the last allocated
cluster on each mounted volume in memory and starts searching for free space from this location upwards instead of at the
beginning of the FAT, as it was still done by DOS 2.x.[18] If the end of the FAT is reached, it would wrap around to continue
the search at the beginning of the FAT until either free space has been found or the original position has been reached
again without having found free space.[18] These pointers are initialized to point to the start of the FATs after bootup,[18]

but on FAT32 volumes, DOS 7.1 and higher will attempt to retrieve the last position from the FS Information Sector. This
mechanism is defeated, however, if an application often deletes and recreates temporary files as the operating system
would then try to maintain the integrity of void data effectively causing more fragmentation in the end.[18] In some DOS
versions, the usage of a special API function to create temporary files can be used to avoid this problem.

Additionally, directory entries of deleted files will be marked 0xE5 since DOS 3.0.[10] DOS 5.0 and higher will start to
reuse these entries only when previously unused directory entries have been used up in the table and the system would
otherwise have to expand the table itself.[11]

Since DOS 3.3 the operating system provides means to improve the performance of file operations with FASTOPEN by
keeping track of the position of recently opened files or directories in various forms of lists (MS-DOS/PC DOS) or hash
tables (DR-DOS), which can reduce file seek and open times significantly. Before DOS 5.0 special care must be taken when
using such mechanisms in conjunction with disk defragmentation software bypassing the file system or disk drivers.

Windows NT will allocate disk space to files on FAT in advance, selecting large contiguous areas, but in case of a failure,
files which were being appended will appear larger than they were ever written into, with a lot of random data at the end.

Other high-level mechanisms may read in and process larger parts or the complete FAT on startup or on demand when
needed and dynamically build up in-memory tree representations of the volume's file structures different from the on-disk
structures.[49][50] This may, on volumes with many free clusters, occupy even less memory than an image of the FAT itself.

https://en.wikipedia.org/wiki/Raymond_Chen_(Microsoft)
https://en.wikipedia.org/wiki/ATX
https://en.wikipedia.org/wiki/Internal_fragmentation
https://en.wikipedia.org/wiki/Cluster_overhang
https://en.wikipedia.org/wiki/FASTOPEN

In particular on highly fragmented or filled volumes, seeks become much faster than with linear scans over the actual FAT,
even if an image of the FAT would be stored in memory. Also, operating on the logically high level of files and cluster-
chains instead of on sector or track level, it becomes possible to avoid some degree of file fragmentation in the first place or
to carry out local file defragmentation and reordering of directory entries based on their names or access patterns in the
background.

Some of the perceived problems with fragmentation of FAT file systems also result from performance limitations of the
underlying block device drivers, which becomes more visible the lesser memory is available for sector buffering and track
blocking/deblocking:

While the single-tasking DOS had provisions for multi-sector reads and track blocking/deblocking, the operating system
and the traditional PC hard disk architecture (only one outstanding input/output request at a time and no DMA transfers)
originally did not contain mechanisms which could alleviate fragmentation by asynchronously prefetching next data while
the application was processing the previous chunks. Such features became available later. Later DOS versions also
provided built-in support for look-ahead sector buffering and came with dynamically loadable disk caching programs
working on physical or logical sector level, often utilizing EMS or XMS memory and sometimes providing adaptive caching
strategies or even run in protected mode through DPMS or Cloaking to increase performance by gaining direct access to
the cached data in linear memory rather than through conventional DOS APIs.

Write-behind caching was often not enabled by default with Microsoft software (if present) given the problem of data loss
in case of a power failure or crash, made easier by the lack of hardware protection between applications and the system.

A directory table is a special type of file that represents a directory (also known as a folder). Since 86-DOS 0.42,[51] each
file or (since MS-DOS 1.40 and PC DOS 2.0) subdirectory stored within it is represented by a 32-byte entry in the table.
Each entry records the name, extension, attributes (archive, directory, hidden, read-only, system and volume), the address
of the first cluster of the file/directory's data, the size of the file/directory, and the date[51] and (since PC DOS 1.1) also the
time of last modification. Earlier versions of 86-DOS used 16-byte directory entries only, supporting no files larger than 16
MB and no time of last modification.[51]

Aside from the root directory table in FAT12 and FAT16 file systems, which occupies the special Root Directory Region
location, all directory tables are stored in the data region. The actual number of entries in a directory stored in the data
region can grow by adding another cluster to the chain in the FAT.

The FAT file system itself does not impose any limits on the depth of a subdirectory tree for as long as there are free
clusters available to allocate the subdirectories, however, the internal Current Directory Structure (CDS) under MS-
DOS/PC DOS limits the absolute path of a directory to 66 characters (including the drive letter, but excluding the NUL
byte delimiter),[5][6][7] thereby limiting the maximum supported depth of subdirectories to 32, whatever occurs earlier.
Concurrent DOS, Multiuser DOS and DR DOS 3.31 to 6.0 (up to including the 1992-11 updates) do not store absolute paths
to working directories internally and therefore do not show this limitation.[52] The same applies to Atari GEMDOS, but the
Atari Desktop does not support more than 8 sub-directory levels. Most applications aware of this extension support paths
up to at least 127 bytes. FlexOS, 4680 OS and 4690 OS support a length of up to 127 bytes as well, allowing depths down to
60 levels.[53] PalmDOS, DR DOS 6.0 (since BDOS 7.1) and higher, Novell DOS, and OpenDOS sport a MS-DOS-compatible
CDS and therefore have the same length limits as MS-DOS/PC DOS.

Each entry can be preceded by "fake entries" to support a VFAT long filename (LFN); see further below.

Legal characters for DOS short filenames include the following:

Directory table

https://en.wikipedia.org/wiki/Fragmentation_(computer)
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Native_Command_Queuing
https://en.wikipedia.org/wiki/Programmed_input/output
https://en.wikipedia.org/wiki/Expanded_memory
https://en.wikipedia.org/wiki/Extended_memory
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/DOS_Protected_Mode_Services
https://en.wikipedia.org/wiki/Helix_Cloaking
https://en.wikipedia.org/wiki/Directory_(computing)
https://en.wikipedia.org/wiki/86-DOS_0.42
https://en.wikipedia.org/wiki/Archive_bit

Upper case letters A–Z
Numbers 0–9
Space (though trailing spaces in either the base name or the extension are considered to be padding and not a part of
the file name; also filenames with space in them could not easily be used on the DOS command line prior to
Windows 95 because of the lack of a suitable escaping system). Another exception are the internal commands
MKDIR/MD and RMDIR/RD under DR-DOS which accept single arguments and therefore allow spaces to be entered.
! # $ % & ' () - @ ^ _ ` { } ~
Characters 128–228
Characters 230–255

This excludes the following ASCII characters:

" * / : < > ? \ |
Windows/MS-DOS has no shell escape character
+ , . ; = []
Allowed in long file names only
Lower case letters a–z
Stored as A–Z; allowed in long file names
Control characters 0–31
Character 127 (DEL)

Character 229 (0xE5) was not allowed as first character in a filename in DOS 1 and 2 due to its use as free entry marker. A
special case was added to circumvent this limitation with DOS 3.0 and higher.

The following additional characters are allowed on Atari's GEMDOS, but should be avoided for compatibility with MS-
DOS/PC DOS:

" + , ; < = > [] |

The semicolon (;) should be avoided in filenames under DR DOS 3.31 and higher, PalmDOS, Novell DOS, OpenDOS,
Concurrent DOS, Multiuser DOS, System Manager and REAL/32, because it may conflict with the syntax to specify file and
directory passwords: "...\DIRSPEC.EXT;DIRPWD\FILESPEC.EXT;FILEPWD". The operating system will strip off
one[52] (and also two—since DR-DOS 7.02) semicolons and pending passwords from the filenames before storing them on
disk. (The command processor 4DOS uses semicolons for include lists and requires the semicolon to be doubled for
password protected files with any commands supporting wildcards.[52])

The at-sign character (@) is used for filelists by many DR-DOS, PalmDOS, Novell DOS, OpenDOS and Multiuser DOS,
System Manager and REAL/32 commands, as well as by 4DOS and may therefore sometimes be difficult to use in
filenames.[52]

Under Multiuser DOS and REAL/32, the exclamation mark (!) is not a valid filename character since it is used to separate
multiple commands in a single command line.[52]

Under IBM 4680 OS and 4690 OS, the following characters are not allowed in filenames:

? * : . ; , [] ! + = < > " - / \ |

Additionally, the following special characters are not allowed in the first, fourth, fifth and eight character of a filename, as
they conflict with the host command processor (HCP) and input sequence table build file names:

@ # () { } $ &

The DOS file names are in the current OEM character set: this can have surprising effects if characters handled in one way
for a given code page are interpreted differently for another code page (DOS command CHCP) with respect to lower and
upper case, sorting, or validity as file name character.

https://en.wikipedia.org/wiki/Escape_character
https://en.wikipedia.org/wiki/MKDIR
https://en.wikipedia.org/wiki/RMDIR
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Escape_character
https://en.wikipedia.org/wiki/4DOS
https://en.wikipedia.org/wiki/Code_page
https://en.wikipedia.org/wiki/CHCP_(command)

Before Microsoft added support for long filenames and creation/access time stamps, bytes 0x0C–0x15 of the directory
entry were used by other operating systems to store additional metadata, most notably the operating systems of the Digital
Research family stored file passwords, access rights, owner IDs, and file deletion data there. While Microsoft's newer
extensions are not fully compatible with these extensions by default, most of them can coexist in third-party FAT
implementations (at least on FAT12 and FAT16 volumes).

32-byte directory entries, both in the Root Directory Region and in subdirectories, are of the following format (see also 8.3
filename):

Directory entry

https://en.wikipedia.org/wiki/8.3_filename

Byte
offset

Length
(bytes) Contents

0x00 8 Short file name (padded with spaces)
The first byte can have the following special values:

Value Description

0x00

Entry is available and no subsequent entry is in use. Also serves as an end marker
when DOS scans a directory table. (Since MS-DOS 1.25 and PC DOS 2.0, not in
earlier versions of MS-DOS, PC DOS, or 86-DOS. Instead, they will treat such entries
as allocated. Therefore, this value must not be used as end marker, if a volume should
remain accessible under PC DOS 1.0/1.1 as well.[nb 12][54][55][56])

0x05

Initial character is actually 0xE5. (since DOS 3.0)
Under DR DOS 6.0 and higher, including PalmDOS, Novell DOS and OpenDOS, 0x05
is also used for pending delete files under DELWATCH. Once they are removed from
the deletion tracking queue, the first character of an erased file is replaced by 0xE5.

0x2E 'Dot' entry; either "." or ".." (since MS-DOS 1.40 and PC DOS 2.0)

0xE5

Entry has been previously erased and/or is available.[nb 12][54][55][56] File undelete
utilities must replace this character with a regular character as part of the undeletion
process. See also: 0x05.
(The reason, why 0xE5 was chosen for this purpose in 86-DOS is down to the fact,
that 8-inch CP/M floppies came pre-formatted with this value filled and so could be
used to store files out-of-the box.[10][nb 1])

Versions of DOS prior to 5.0 start scanning directory tables from the top of the directory table to the
bottom. In order to increase chances for successful file undeletion, DOS 5.0 and higher will
remember the position of the last written directory entry and use this as a starting point for directory
table scans.

0x08 3 Short file extension (padded with spaces)

0x0B 1 File Attributes

https://en.wikipedia.org/wiki/Undelete

Bit Mask Description

0 0x01

Read Only. (Since DOS 2.0) If this bit is set, the operating system will not allow a
file to be opened for modification.
Deliberately setting this bit for files which will not be written to (executables,
shared libraries and data files) may help avoid problems with concurrent file
access in multi-tasking, multi-user or network environments with applications not
specifically designed to work in such environments (i.e. non-SHARE-enabled
programs).

The DCF digital camera file system standard utilizes the Read Only attribute to
allow directories or individual files (DCF objects) to be marked as "protected" from
deletion by the user.[4]

1 0x02

Hidden. Hides files or directories from normal directory views.
Under DR DOS 3.31 and higher, under PalmDOS, Novell DOS, OpenDOS,
Concurrent DOS, Multiuser DOS, REAL/32, password protected files and
directories also have the hidden attribute set.[52] Password-aware operating
systems should not hide password-protected files from directory views, even if
this bit may be set. The password protection mechanism does not depend on the
hidden attribute being set up to including DR-DOS 7.03, but if the hidden attribute
is set, it should not be cleared for any password-protected files.

2 0x04
System. Indicates that the file belongs to the system and must not be physically
moved (e.g., during defragmentation), because there may be references into the
file using absolute addressing bypassing the file system (boot loaders, kernel
images, swap files, extended attributes, etc.).

3 0x08

Volume Label. (Since MS-DOS 1.28 and PC DOS 2.0) Indicates an optional
directory volume label, normally only residing in a volume's root directory. Ideally,
the volume label should be the first entry in the directory (after reserved entries) in
order to avoid problems with VFAT LFNs. If this volume label is not present, some
systems may fall back to display the partition volume label instead, if an EBPB is
present in the boot sector (not present with some non-bootable block device
drivers, and possibly not writeable with boot sector write protection). Even if this
volume label is present, partitioning tools like FDISK may display the partition
volume label instead. The entry occupies a directory entry but has no file
associated with it. Volume labels have a filesize entry of zero.
Pending delete files and directories under DELWATCH have the volume attribute
set until they are purged or undeleted.[52]

4 0x10
Subdirectory. (Since MS-DOS 1.40 and PC DOS 2.0) Indicates that the cluster-
chain associated with this entry gets interpreted as subdirectory instead of as a
file. Subdirectories have a filesize entry of zero.

5 0x20
Archive. (Since DOS 2.0) Typically set by the operating system as soon as the file
is created or modified to mark the file as "dirty", and reset by backup software
once the file has been backed up to indicate "pure" state.

6 0x40 Device (internally set for character device names found in filespecs, never found
on disk), must not be changed by disk tools.

7 0x80 Reserved, must not be changed by disk tools.

https://en.wikipedia.org/wiki/Design_rule_for_Camera_File_system
https://en.wikipedia.org/wiki/DCF_object
https://en.wikipedia.org/wiki/Archive_bit
https://en.wikipedia.org/wiki/Device_file

Under DR DOS 6.0 and higher, including PalmDOS, Novell DOS and OpenDOS, the volume
attribute is set for pending delete files and directories under DELWATCH.

An attribute combination of 0x0F is used to designate a VFAT long file name entry since MS-
DOS 7.0. Older versions of DOS can mistake this for a directory volume label, as they take the first
entry with volume attribute set as volume label. This problem can be avoided if a directory volume
label is enforced as part of the format process; for this reason some disk tools explicitly write
dummy "NO␠NAME␠␠␠␠" directory volume labels when the user does not specify a volume
label.[nb 13] Since volume labels normally don't have the system attribute set at the same time, it is
possible to distinguish between volume labels and VFAT LFN entries. The attribute combination
0x0F could occasionally also occur as part of a valid pending delete file under DELWATCH,
however on FAT12 and FAT16 volumes, VFAT LFN entries always have the cluster value at 0x1A
set to 0x0000 and the length entry at 0x1C is never 0x00000000, whereas the entry at 0x1A is
always non-zero for pending delete files under DELWATCH. This check does not work on FAT32
volumes.

0x0C 1
CP/M-86 and DOS Plus store user attributes F1'—F4' here.[57] (DOS Plus 1.2 with BDOS 4.1
supports passwords only on CP/M media, not on FAT12 or FAT16 media.[58] While
DOS Plus 2.1 supported logical sectored FATs with a partition type 0xF2, FAT16B and FAT32
volumes were not supported by these operation systems. Even if a partition would have been
converted to FAT16B it would still not be larger than 32 MB. Therefore, this usage is not
conflictive with FAT32.IFS, FAT16+ or FAT32+ as they can never occur on the same type of
volume.):

Bit Mask Description

7 0x80 F1': Modify default open rules[52]

6 0x40 F2': Partial close default[52]

5 0x20 F3': Ignore Close Checksum Error[52]

4 0x10 F4': Disable checksums[52]

3 0x08 Reserved

2 0x04 Delete requires password

1 0x02 Write requires password

0 0x01 Read requires password

MSX-DOS 2: For a deleted file, the original first character of the filename. For the same feature
in various other operating systems, see offset 0x0D if enabled in MSX boot sectors at sector
offset 0x026. MSX-DOS supported FAT12 volumes only, but third-party extensions for FAT16
volumes exist. Therefore, this usage is not conflictive with FAT32.IFS and FAT32+ below. It
does not conflict with the usage for user attributes under CP/M-86 and DOS Plus as well, since
they are no longer important for deleted files.
Windows NT and later versions uses bits 3 and 4 to encode case information (see VFAT);
otherwise 0.[59]

DR-DOS 7.0x reserved bits other than 3 and 4 for internal purposes since 1997. The value
should be set to 0 by formatting tools and must not be changed by disk tools.[52]

On FAT32 volumes under OS/2 and eComStation the third-party FAT32.IFS driver utilizes this
entry as a mark byte to indicate the presence of extra "␠EA.␠SF" files holding extended
attributes with parameter /EAS. Version 0.70 to 0.96 used the magic values 0x00 (no EAs),
0xEA (normal EAs) and 0xEC (critical EAs),[60] whereas version 0.97 and higher since 2003-09

https://en.wikipedia.org/wiki/CP/M-86
https://en.wikipedia.org/wiki/DOS_Plus
https://en.wikipedia.org/wiki/Logical_sectored_FAT
https://en.wikipedia.org/wiki/Partition_type#PID_F2h
https://en.wikipedia.org/wiki/MSX-DOS
https://en.wikipedia.org/wiki/Extended_attributes

use 0x00, 0x40 (normal EAs) and 0x80 (critical EAs) as bitflags for compatibility with Windows
NT.[61][62]

0x0D 1
First character of a deleted file under Novell DOS, OpenDOS and DR-DOS 7.02 and higher. A
value of 0xE5 (229), as set by DELPURGE, will prohibit undeletion by UNDELETE, a value of
0x00 will allow conventional undeletion asking the user for the missing first filename
character.[52] S/DOS 1 and PTS-DOS 6.51 and higher also support this feature if enabled with
SAVENAME=ON in CONFIG.SYS. For the same feature in MSX-DOS, see offset 0x0C.
Create time, fine resolution: 10 ms units, values from 0 to 199 (since DOS 7.0 with VFAT).

Double usage for create time ms and file char is not conflictive, since the creation time is no longer
important for deleted files.

0x0E 2
Under DR DOS 3.31 and higher including PalmDOS, Novell DOS and OpenDOS[57] as well as
under Concurrent DOS, Multiuser DOS, System Manager, and REAL/32 and possibly also
under FlexOS, 4680 OS, 4690 OS any non-zero value indicates the password hash of a
protected file, directory or volume label.[52] The hash is calculated from the first eight characters
of a password. If the file operation to be carried out requires a password as per the access
rights bitmap stored at offset 0x14, the system tries to match the hash against the hash code of
the currently set global password (by PASSWORD /G) or, if this fails, tries to extract a semicolon-
appended password from the filespec passed to the operating system and checks it against the
hash code stored here. A set password will be preserved even if a file is deleted and later
undeleted.[52]

Create time (since DOS 7.0 with VFAT). The hour, minute and second are encoded according to
the following bitmap:

Bits Description

15-
11 Hours (0-23)

10-
5 Minutes (0-59)

4-0 Seconds/2 (0-29)

The seconds is recorded only to a 2 second resolution. Finer resolution for file creation is
found at offset 0x0D.

If bits 15-11 > 23 or bits 10-5 > 59 or bits 4-0 > 29 here, or when bits 12-0 at offset 0x14 hold an
access bitmap and this is not a FAT32 volume or a volume using OS/2 Extended Attributes, then
this entry actually holds a password hash, otherwise it can be assumed to be a file creation time.

0x10 2
FlexOS, 4680 OS and 4690 OS store a record size in the word at entry 0x10.[57] This is mainly
used for their special database-like file types random file, direct file, keyed file, and sequential
file. If the record size is set to 0 (default) or 1, the operating systems assume a record
granularity of 1 byte for the file, for which it will not perform record boundary checks in
read/write operations.[63]

With DELWATCH 2.00 and higher under Novell DOS 7, OpenDOS 7.01 and DR-DOS 7.02 and
higher, this entry is used to store the last modified time stamp for pending delete files and
directories.[52][57] Cleared when file is undeleted or purged. See offset 0x0E for a format
description.
Create date (since DOS 7.0 with VFAT). The year, month and day are encoded according to the
following bitmap:

https://en.wikipedia.org/wiki/SAVENAME_(CONFIG.SYS_directive)
https://en.wikipedia.org/wiki/FlexOS
https://en.wikipedia.org/wiki/4680_OS
https://en.wikipedia.org/wiki/4690_OS
https://en.wikipedia.org/wiki/Record-oriented_filesystem

Bits Description

15-9 Year (0 = 1980, 119 = 2099 supported under DOS/Windows, theoretically up to 127 =
2107)

8-5 Month (1–12)

4-0 Day (1–31)

The usage for creation date for existing files and last modified time for deleted files is not conflictive
because they are never used at the same time. For the same reason, the usage for the record size
of existing files and last modified time of deleted files is not conflictive as well. Creation dates and
record sizes cannot be used at the same time, however, both are stored only on file creation and
never changed later on, thereby limiting the conflict to FlexOS, 4680 OS and 4690 OS systems
accessing files created under foreign operating systems as well as potential display or file sorting
problems on systems trying to interpret a record size as creation time. To avoid the conflict, the
storage of creation dates should be an optional feature of operating systems supporting it.

0x12 2
FlexOS, 4680 OS, 4690 OS, Multiuser DOS, System Manager, REAL/32 and DR DOS 6.0 and
higher with multi-user security enabled use this field to store owner IDs.[52] Offset 0x12 holds
the user ID, 0x13 the group ID of a file's creator.[57]

In multi-user versions, system access requires a logon with account name and password,
and the system assigns group and user IDs to running applications according to the
previously set up and stored authorization info and inheritance rules. For 4680 OS and
4690 OS, group ID 1 is reserved for the system, group ID 2 for vendor, group ID 3 for the
default user group. Background applications started by users have a group ID 2 and user ID
1, whereas operating system background tasks have group IDs 1 or 0 and user IDs 1 or 0.
IBM 4680 BASIC and applications started as primary or secondary always get group ID 2
and user ID 1. When applications create files, the system will store their user ID and group
ID and the required permissions with the file.[63]

With DELWATCH 2.00 and higher under Novell DOS 7, OpenDOS 7.01 and DR-DOS 7.02 and
higher, this entry is used to store the last modified date stamp for pending delete files and
directories.[52][57] Cleared when file is undeleted or purged. See offset 0x10 for a format
description.
Last access date (since DOS 7.0 if ACCDATE enabled in CONFIG.SYS for the corresponding
drive);[2][52] see offset 0x10 for a format description.

The usage for the owner IDs of existing files and last modified date stamp for deleted files is not
conflictive because they are never used at the same time.[52] The usage of the last modified date
stamp for deleted files and access date is also not conflictive since access dates are no longer
important for deleted files, however, owner IDs and access dates cannot be used at the same time.

0x14 2
Access rights bitmap for world/group/owner read/write/execute/delete protection for password
protected files, directories (or volume labels) under DR DOS 3.31 and higher, including
PalmDOS, Novell DOS and OpenDOS,[57] and under FlexOS,[57] 4680 OS, 4690 OS,
Concurrent DOS, Multiuser DOS, System Manager, and REAL/32.

Typical values stored on a single-user system are 0x0000 (PASSWORD /N for all access
rights "RWED"), 0x0111 (PASSWORD /D for access rights "RW?-"), 0x0555 (PASSWORD /W
for access rights "R-?-") and 0x0DDD (PASSWORD /R for files or PASSWORD /P for
directories for access rights "--?-").[52] Bits 1, 5, 9, 12-15 will be preserved when changing
access rights. If execute bits are set on systems other than FlexOS, 4680 OS or 4690 OS,
they will be treated similar to read bits. (Some versions of PASSWORD allow to set
passwords on volume labels (PASSWORD /V) as well.)

https://en.wikipedia.org/wiki/Epoch_of_1980-01-01
https://en.wikipedia.org/wiki/Year_2100_problem
https://en.wikipedia.org/wiki/Year_2108_problem
https://en.wikipedia.org/wiki/IBM_4680_BASIC
https://en.wikipedia.org/wiki/ACCDATE_(CONFIG.SYS_directive)

Single-user systems calculate the most restrictive rights of the three sets (DR DOS up to 5.0
used bits 0-3 only) and check if any of the requested file access types requires a permission
and if a file password is stored.[52] If not, file access is granted. Otherwise the stored
password is checked against an optional global password provided by the operating system
and an optional file password provided as part of the filename separated by a semicolon (not
under FlexOS, 4680 OS, 4690 OS). If neither of them is provided, the request will fail. If one
of them matches, the system will grant access (within the limits of the normal file attributes,
that is, a read-only file can still not be opened for write this way), otherwise fail the
request.[52]

Under FlexOS, 4680 OS and 4690 OS the system assigns group and user IDs to
applications when launched. When they request file access, their group and user IDs are
compared with the group and user IDs of the file to be opened. If both IDs match, the
application will be treated as file owner. If only the group ID matches, the operating system
will grant group access to the application, and if the group ID does not match as well, it will
grant world access. If an application's group ID and user ID are both 0, the operating system
will bypass security checking. Once the permission class has been determined, the
operating system will check if any of the access types of the requested file operation requires
a permission according to the stored bitflags of the selected class owner, group or world in
the file's directory entry. Owner, group and world access rights are independent and do not
need to have diminishing access levels. Only, if none of the requested access types require
a permission, the operating system will grant access, otherwise it fails.
If multiuser file / directory password security is enabled the system will not fail at this stage
but perform the password checking mechanism for the selected permission class similar to
the procedure described above. With multi-user security loaded many utilities since DR DOS
6.0 will provide an additional /U:name parameter.[52]

File access rights bitmap:[64]

Bit Mask Description

0 0x0001 Owner delete/rename/attribute change requires permission[52][57][64]

1 0x0002 Owner execute requires permission (FlexOS, 4680 OS, 4690 OS only)[64]

2 0x0004 Owner write/modify requires permission[52][57][64]

3 0x0008 Owner read/copy requires permission[52][57][64]

4 0x0010 Group delete/rename/attribute change requires permission[52][57][64]

5 0x0020 Group execute requires permission (FlexOS, 4680 OS, 4690 OS only)[64]

6 0x0040 Group write/modify requires permission[52][57][64]

7 0x0080 Group read/copy requires permission[52][57][64]

8 0x0100 World delete/rename/attribute change requires permission[52][57][64]

9 0x0200 World execute requires permission (FlexOS, 4680 OS, 4690 OS only)[64]

10 0x0400 World write/modify requires permission[52][57][64]

11 0x0800 World read/copy requires permission[52][57][64]

12-
15

bits must be set to 0 during format and must not be modified by disk tools later
on;[52] bit 15 is used internally,[64] but not on disk

File renames require either write or delete rights, IBM 4680 BASIC CHAIN requires execute
rights.

Extended Attributes handle (used by OS/2 1.2 and higher as well as by Windows NT) in FAT12
and FAT16; first cluster of EA file or 0, if not used.[52][65] A different method to store extended
attributes has been devised for FAT32 volumes, see FAT32.IFS under offset 0x0C.
High two bytes of first cluster number in FAT32; with the low two bytes stored at offset 0x1A.

https://en.wikipedia.org/wiki/IBM_4680_BASIC
https://en.wikipedia.org/wiki/Extended_Attributes
https://en.wikipedia.org/wiki/OS/2

The storage of the high two bytes of the first cluster in a file on FAT32 is partially conflictive with
access rights bitmaps.

0x16 2
Last modified time (since PC DOS 1.1/MS-DOS 1.20); see offset 0x0E for a format description.
Under Novell DOS, OpenDOS and DR-DOS 7.02 and higher, this entry holds the deletion time
of pending delete files or directories under DELWATCH 2.00 or higher. The last modified time
stamp is copied to 0x10 for possible later restoration.[52] See offset 0x0E for a format
description.

0x18 2
Last modified date; see offset 0x10 for a format description.
Under Novell DOS, OpenDOS and DR-DOS 7.02 and higher, this entry holds the deletion date
of pending delete files or directories under DELWATCH 2.00 or higher. The last modified date
stamp is copied to 0x12 for possible later restoration.[52] See offset 0x10 for a format
description.

0x1A 2

Start of file in clusters in FAT12 and FAT16. Low two bytes of first cluster in FAT32; with the high
two bytes stored at offset 0x14.
Entries with the Volume Label flag, subdirectory ".." pointing to the FAT12 and FAT16 root, and
empty files with size 0 should have first cluster 0.

VFAT LFN entries also have this entry set to 0; on FAT12 and FAT16 volumes this can be used as
part of a detection mechanism to distinguish between pending delete files under DELWATCH and
VFAT LFNs; see above.

0x1C 4 File size in bytes. Entries with the Volume Label or Subdirectory flag set should have a size of 0.
VFAT LFN entries never store the value 0x00000000 here. This can be used as part of a detection
mechanism to distinguish between pending delete files under DELWATCH and VFAT LFNs; see
above.

The FlexOS-based operating systems IBM 4680 OS and IBM 4690 OS support unique distribution attributes stored in
some bits of the previously reserved areas in the directory entries:[66]

1. Local: Don't distribute file but keep on local controller only.[nb 14]

2. Mirror file on update: Distribute file to server only when file is updated.
3. Mirror file on close: Distribute file to server only when file is closed.
4. Compound file on update: Distribute file to all controllers when file is updated.
5. Compound file on close: Distribute file to all controllers when file is closed.[67]

Some incompatible extensions found in some operating systems include:

https://en.wikipedia.org/wiki/PC_DOS_1.1
https://en.wikipedia.org/wiki/MS-DOS_1.20
https://en.wikipedia.org/wiki/FlexOS
https://en.wikipedia.org/wiki/IBM_4680_OS
https://en.wikipedia.org/wiki/IBM_4690_OS

Byte
offset

Length
(bytes) System Description

0x0C 2 RISC
OS File type, 0x0000–0x0FFF

0x0C 4

Petrov
DOSFS
(http://
mdfs.ne
t/Apps/
Filing/D
OSFS)

File load address

0x0E 2 ANDOS File address in the memory

0x10 4

Petrov
DOSFS
(http://
mdfs.ne
t/Apps/
Filing/D
OSFS)

File execution address

VFAT Long File Names (LFNs) are stored on a FAT file
system using a trick: adding additional entries into the
directory before the normal file entry. The additional entries
are marked with the Volume Label, System, Hidden, and
Read Only attributes (yielding 0x0F), which is a
combination that is not expected in the MS-DOS
environment, and therefore ignored by MS-DOS programs
and third-party utilities. Notably, a directory containing only
volume labels is considered as empty and is allowed to be
deleted; such a situation appears if files created with long
names are deleted from plain DOS. This method is very
similar to the DELWATCH method to utilize the volume
attribute to hide pending delete files for possible future
undeletion since DR DOS 6.0 (1991) and higher. It is also
similar to a method publicly discussed to store long
filenames on Ataris and under Linux in 1992.[68][69]

Because older versions of DOS could mistake LFN names in the root directory for the volume label, VFAT was designed to
create a blank volume label in the root directory before adding any LFN name entries (if a volume label did not already
exist).[nb 13]

Each phony entry can contain up to 13 UCS-2 characters (26 bytes) by using fields in the record which contain file size or
time stamps (but not the starting cluster field, for compatibility with disk utilities, the starting cluster field is set to a value
of 0. See 8.3 filename for additional explanations). Up to 20 of these 13-character entries may be chained, supporting a
maximum length of 255 UCS-2 characters.[59]

After the last UCS-2 character, a 0x0000 is added. The remaining unused characters are filled with 0xFFFF.

LFN entries use the following format:

VFAT long file names

FAT32 directory structure with three files, two of which
use VFAT long file names.

https://en.wikipedia.org/wiki/RISC_OS
http://mdfs.net/Apps/Filing/DOSFS
https://en.wikipedia.org/wiki/ANDOS
http://mdfs.net/Apps/Filing/DOSFS
https://en.wikipedia.org/wiki/VFAT
https://en.wikipedia.org/wiki/UCS-2
https://en.wikipedia.org/wiki/8.3_filename
https://en.wikipedia.org/wiki/UCS-2
https://en.wikipedia.org/wiki/File:VFAT_directory_entries.png

Byte
offset

Length
(bytes) Description

0x00 1 Sequence Number (bit 6: last logical, first physical LFN entry, bit 5: 0; bits 4-0: number 0x01..0x14
(0x1F), deleted entry: 0xE5)

0x01 10 Name characters (five UCS-2 characters)

0x0B 1 Attributes (always 0x0F)

0x0C 1 Type (always 0x00 for VFAT LFN, other values reserved for future use; for special usage of bits 4
and 3 in SFNs see further up)

0x0D 1 Checksum of DOS file name

0x0E 12 Name characters (six UCS-2 characters)

0x1A 2 First cluster (always 0x0000)

0x1C 4 Name characters (two UCS-2 characters)

If there are multiple LFN entries required to represent a file name, the entry representing the end of the filename comes
first. The sequence number of this entry has bit 6 (0x40) set to represent that it is the last logical LFN entry, and it has the
highest sequence number. The sequence number decreases in the following entries. The entry representing the start of the
filename has sequence number 1. A value of 0xE5 is used to indicate that the entry is deleted.

On FAT12 and FAT16 volumes, testing for the values at 0x1A to be zero and at 0x1C to be non-zero can be used to
distinguish between VFAT LFNs and pending delete files under DELWATCH.

For example, a filename like "File with very long filename.ext" would be formatted like this:

Sequence number Entry data

0x43 "me.ext"

0x02 "y long filena"

0x01 "File with ver"

??? Normal 8.3 entry

A checksum also allows verification of whether a long file name matches the 8.3 name; such a mismatch could occur if a
file was deleted and re-created using DOS in the same directory position. The checksum is calculated using the algorithm
below. (Note that pFCBName is a pointer to the name as it appears in a regular directory entry, i.e. the first eight
characters are the filename, and the last three are the extension. The dot is implicit. Any unused space in the filename is
padded with space characters (ASCII 0x20). For example, "Readme.txt" would be "README␠␠TXT".)

unsigned char lfn_checksum(const unsigned char *pFCBName)
{
 int i;
 unsigned char sum = 0;

 for (i = 11; i; i--)
 sum = ((sum & 1) << 7) + (sum >> 1) + *pFCBName++;

 return sum;
}

If a filename contains only lowercase letters, or is a combination of a lowercase basename with an uppercase extension, or
vice versa; and has no special characters, and fits within the 8.3 limits, a VFAT entry is not created on Windows NT and
later versions of Windows such as XP. Instead, two bits in byte 0x0C of the directory entry are used to indicate that the

https://en.wikipedia.org/wiki/UCS-2
https://en.wikipedia.org/wiki/UCS-2
https://en.wikipedia.org/wiki/UCS-2
https://en.wikipedia.org/wiki/Checksum

filename should be considered as entirely or partially lowercase. Specifically, bit 4 means lowercase extension and bit 3
lowercase basename, which allows for combinations such as "example.TXT" or "HELLO.txt" but not "Mixed.txt". Few
other operating systems support it. This creates a backwards-compatibility problem with older Windows versions
(Windows 95 / 98 / 98 SE / ME) that see all-uppercase filenames if this extension has been used, and therefore can change
the name of a file when it is transported between operating systems, such as on a USB flash drive. Current 2.6.x versions of
Linux will recognize this extension when reading (source: kernel 2.6.18 /fs/fat/dir.c and fs/vfat/namei.c); the
mount option shortname determines whether this feature is used when writing.[70]

Comparison of file systems
Drive letter assignment
exFAT
Extended Boot Record (EBR)
FAT filesystem and Linux
List of file systems
Master Boot Record (MBR)
Partition type
Timeline of DOS operating systems
Transaction-Safe FAT File System
Turbo FAT
Volume Boot Record (VBR)

1. This is the reason, why 0xE5 had a special meaning in directory entries.
2. One utility providing an option to specify the desired format filler value for hard disks is DR-DOS' FDISK R2.31 with its

optional wipe parameter /W:246. In contrast to other FDISK utilities, DR-DOS FDISK is not only a partitioning tool,
but can also format freshly created partitions as FAT12, FAT16 or FAT32. This reduces the risk to accidentally format
wrong volumes.

3. For maximum compatibility with MS-DOS/PC DOS and DR-DOS, operating systems trying to determine a floppy
disk's format should test on all mentioned opcode sequences at sector offset 0x000 in addition to looking for a valid
media descriptor byte at sector offset 0x015 before assuming the presence of a BPB. Although PC DOS 1.0 floppy
disks do not contain a BPB, they start with 0xEB as well, but do not show a 0x90 at offset 0x002. PC DOS 1.10
floppy disks even start with 0xEB 0x?? 0x90, although they still do not feature a BPB. In both cases, a test for a
valid media descriptor at offset 0x015 would fail (value 0x00 instead of valid media descriptors 0xF0 and higher). If
these tests fail, DOS checks for the presence of a media descriptor byte in the first byte of the first FAT in the sector
following the boot sector (logical sector 1 on FAT12/FAT16 floppies).

4. The signature at offset 0x1FE in boot sectors is 0x55 0xAA, that is 0x55 at offset 0x1FE and 0xAA at offset 0x1FF.
Since little-endian representation must be assumed in the context of IBM PC compatible machines, this can be written
as 16-bit word 0xAA55 in programs for x86 processors (note the swapped order), whereas it would have to be written
as 0x55AA in programs for other CPU architectures using a big-endian representation. Since this has been mixed up
numerous times in books and even in original Microsoft reference documents, this article uses the offset-based byte-
wise on-disk representation to avoid any possible misinterpretation.

5. The checksum entry in Atari boot sectors holds the alignment value, not the magic value itself. The magic value
0x1234 is not stored anywhere on disk. In contrast to Intel x86 processors, the Motorola 680x0 processors as used in
Atari machines use a big-endian memory representation and therefore a big-endian representation must be assumed
when calculating the checksum. As a consequence of this, for checksum verification code running on x86 machines,
pairs of bytes must be swapped before the 16-bit addition.

See also

Notes

https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Drive_letter_assignment
https://en.wikipedia.org/wiki/ExFAT
https://en.wikipedia.org/wiki/Extended_Boot_Record
https://en.wikipedia.org/wiki/FAT_filesystem_and_Linux
https://en.wikipedia.org/wiki/List_of_file_systems
https://en.wikipedia.org/wiki/Master_Boot_Record
https://en.wikipedia.org/wiki/Partition_type
https://en.wikipedia.org/wiki/Timeline_of_DOS_operating_systems
https://en.wikipedia.org/wiki/Transaction-Safe_FAT_File_System
https://en.wikipedia.org/wiki/Turbo_FAT
https://en.wikipedia.org/wiki/Volume_Boot_Record
https://en.wikipedia.org/wiki/FDISK
https://en.wikipedia.org/wiki/FAT12
https://en.wikipedia.org/wiki/FAT16
https://en.wikipedia.org/wiki/FAT32
https://en.wikipedia.org/wiki/Little-endian
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Intel_x86
https://en.wikipedia.org/wiki/Big-endian
https://en.wikipedia.org/wiki/Modular_sum
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Magic_number_(programming)
https://en.wikipedia.org/wiki/Intel_x86
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/Big-endian

6. DR-DOS is able to boot off FAT12/FAT16 logical sectored media with logical sector sizes up to 1024 bytes.
7. The following DOS functions return these register values: INT 21h/AH=2Ah "Get system date" returned values: CX =

year (1980..2099), DH = month (1..12), DL = day (1..31). INT 21h/AH=2Ch "Get system time" returned values: CH =
hour (0..23), CL = minute (0..59), DH = second (0..59), DL = 1/100 seconds (0..99).

8. Windows XP has been observed to create such hybrid disks when reformatting FAT16B formatted ZIP-100 disks to
FAT32 format. The resulting volumes were FAT32 by format, but still used the FAT16B EBPB. (It is unclear how
Windows determines the location of the root directory on FAT32 volumes, if only a FAT16 EBPB was used.)

9. In order to support the coexistance of DR-DOS with PC DOS and multiple parallel installations of DR-DOS, the
extension of the default "IBMBIO␠␠COM" boot file name can be changed using the SYS /DR:ext option, where ext
represents the new extension. Other potential DR-DOS boot file names to be expected in special scenarios are
"DRBIOS␠␠SYS", "DRDOS␠␠␠SYS", "IO␠␠␠␠␠␠SYS", "JO␠␠␠␠␠␠SYS".

10. If a volume's dirty shutdown flag is still cleared on startup, the volume was not properly unmounted. This would, for
example, cause Windows 98 WIN.COM to start SCANDISK in order to check for and repair potential logical file
system errors. If the bad sector flag is cleared, it will force a surface scan to be carried out as well. This can be
disabled by setting AUTOSCAN=0 in the [OPTIONS] section in MSDOS.SYS file.

11. See other links for special precautions in regard to occurrences of a cluster value of 0xFF0 on FAT12 volumes under
MS-DOS/PC DOS 3.3 and higher.

12. Some versions of FORMAT since MS-DOS 1.25 and PC DOS 2.0 supported an option /O (for old) to fill the first byte
of all directory entries with 0xE5 instead of utilizing the end marker 0x00. Thereby. the volume remained accessible
under PC DOS 1.0-1.1, while formatting took somewhat longer and newer versions of DOS could not take advantage
of the considerable speed-up caused by using the end marker 0x00.

13. To avoid potential misinterpretation of directory volume labels with VFAT LFN entries by non-VFAT aware operating
systems, the DR-DOS 7.07 FDISK and FORMAT tools are known to explicitly write dummy "NO␠NAME␠␠␠␠" directory
volume labels if the user skips entering a volume label. The operating system would internally default to return the
same string if no directory volume label could be found in the root of a volume, but without a real volume label stored
as the first entry (after the directory entries), older operating systems could erroneously pick up VFAT LFN entries
instead.

14. This IBM 4680 OS and 4690 OS distribution attribute type must have an on-disk bit value of 0 as files fall back to this
type when attributes get lost accidentally.

1. "File Systems" (https://technet.microsoft.com/en-us/library/cc938937.aspx). Microsoft TechNet. 2001. Retrieved
2011-07-31.

2. Microsoft (2006-11-15). Windows 95 CD-ROM CONFIG.TXT File (http://support.microsoft.com/kb/135481/EN-US)
Article 135481, Revision: 1.1, retrieved 2011-12-22: "For each hard disk, specifies whether to record the date that files
are last accessed. Last access dates are turned off for all drives when your computer is started in safe mode, and are
not maintained for floppy disks by default. Syntax: ACCDATE=drive1+|- [drive2+|-]..."

3. "FAT File System (Windows Embedded CE 6.0)" (http://msdn.microsoft.com/en-us/library/ee489982%28v=winembedd
ed.60%29.aspx). Microsoft. 2010-01-06. Retrieved 2013-07-07.

4. JEIDA/JEITA/CIPA (2010). "Standard of the Camera & Imaging Products Association, CIPA DC-009-Translation-2010,
Design rule for Camera File system: DCF Version 2.0 (Edition 2010)" (https://web.archive.org/web/20130930190707/h
ttp://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-009-2010_E.pdf) (PDF). Archived from the original (http://www.cip
a.jp/english/hyoujunka/kikaku/pdf/DC-009-2010_E.pdf) (PDF) on 2013-09-30. Retrieved 2011-04-13.

5. "Volume and File Structure of Disk Cartridges for Information Interchange" (http://www.ecma-international.org/publicati
ons/standards/Ecma-107.htm). Standard ECMA-107 (2nd ed., June 1995). ECMA. 1995. Retrieved 2011-07-30.

6. "Information technology -- Volume and file structure of disk cartridges for information interchange" (http://www.iso.org/i
so/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21273). ISO/IEC 9293:1994. ISO catalogue. 1994.
Retrieved 2012-01-06.

References

https://en.wikipedia.org/wiki/Epoch_of_1980-01-01
https://en.wikipedia.org/wiki/Year_2100_problem
https://en.wikipedia.org/wiki/SCANDISK
https://en.wikipedia.org/wiki/MSDOS.SYS
https://en.wikipedia.org/wiki/FORMAT
https://en.wikipedia.org/wiki/MS-DOS_1.25
https://en.wikipedia.org/wiki/PC_DOS_2.0
https://en.wikipedia.org/wiki/PC_DOS_1.0
https://en.wikipedia.org/wiki/PC_DOS_1.1
https://en.wikipedia.org/wiki/IBM_4680_OS
https://en.wikipedia.org/wiki/IBM_4690_OS
https://technet.microsoft.com/en-us/library/cc938937.aspx
https://en.wikipedia.org/wiki/Microsoft_TechNet
http://support.microsoft.com/kb/135481/EN-US
https://en.wikipedia.org/wiki/ACCDATE_(CONFIG.SYS_directive)
http://msdn.microsoft.com/en-us/library/ee489982%28v=winembedded.60%29.aspx
https://web.archive.org/web/20130930190707/http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-009-2010_E.pdf
http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-009-2010_E.pdf
http://www.ecma-international.org/publications/standards/Ecma-107.htm
https://en.wikipedia.org/wiki/Ecma_International
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21273
https://en.wikipedia.org/wiki/International_Organization_for_Standardization

7. "Information processing -- Volume and file structure of flexible disk cartridges for information interchange" (http://www.i
so.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16948). ISO 9293:1987. ISO catalogue.
1987. Retrieved 2012-01-06.

8. Aaron R. Reynolds, Dennis R. Adler, Ralph A. Lipe, Ray D. Pedrizetti, Jeffrey T. Parsons, Rasipuram V. Arun (1998-
05-26). "Common name space for long and short filenames" (https://www.google.com/patents?id=bUohAAAAEBAJ).
US Patent 5758352. Retrieved 2012-01-19.

9. "Microsoft Extensible Firmware Initiative FAT32 File System Specification, FAT: General Overview of On-Disk Format"
(http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc). Microsoft.
2000-12-06. Retrieved 2011-07-03.

10. Schulman, Andrew; Brown, Ralf; Maxey, David; Michels, Raymond J.; Kyle, Jim (1994). Undocumented DOS - A
programmer's guide to reserved MS-DOS functions and data structures - expanded to include MS-DOS 6, Novell
DOS and Windows 3.1 (2 ed.). Addison Wesley. p. 11. ISBN 0-201-63287-X. ISBN 978-0-201-63287-3.

11. Geoff Chappell (1994). DOS Internals. Addison Wesley. ISBN 0-201-60835-9, ISBN 978-0-201-60835-9.
12. Microsoft MS-DOS 3.1 Programmierhandbuch in englischer Sprache [Microsoft MS-DOS 3.1 Programmer's

Reference Manual in English]. München: Markt & Technik Verlag (published 1986). 1984. ISBN 3-89090-368-1. 8411-
310-02, 036-014-012. "In regard to the jump instruction at the start of a boot sector: "Determine if the first byte of the
boot sector is an E9H or EBIT (the first byte of a 3-byte NEAR or 2-byte short jump) or an EBH (the first byte of a 2-
byte jump followed by a NOP). If so, a BPB is located beginning at offset 3."" (NB. This book contains many errors.)

13. Daniel B. Sedory. The Boot Sector of IBM Personal Computer DOS Version 1.00 (1981). 2005-08-02 ([1] (http://thesta
rman.narod.ru/DOS/ibm100/Boot.htm#AuthID)).

14. Daniel B. Sedory. The Boot Sector of IBM Personal Computer DOS Version 1.10 (1982). 2005-07-29 ([2] (http://thesta
rman.narod.ru/DOS/ibm110/Boot.htm#AuthID)).

15. Caldera (1997). Caldera OpenDOS Machine Readable Source Kit 7.01. The DISK.ASM file in the machine readable
source kit shows that DR-DOS tests on value 0x69 as well.

16. Matthias Paul (2002-02-20). "Need DOS 6.22 (Not OEM)" (https://groups.google.com/group/alt.msdos.programmer/m
sg/6b10a1ea602e61e). alt.msdos.programmer. Retrieved 2006-10-14.

17. Wally Bass (1994-02-14). "Cluster Size" (http://groups.google.co.uk/group/comp.os.msdos.programmer/msg/79de2d7
6832cfbd6). comp.os.msdos.programmer. Retrieved 2006-10-14.

18. Dave Williams (1992). Programmer's Technical Reference for MSDOS and the IBM PC. DOSREF, Shareware version
01/12/1992. ISBN 1-878830-02-3. ([3] (http://www.o3one.org/hwdocs/bios_doc/dosref22.html), accessed on 2012-01-
08). Comment: The author mentions that DOS 4.0 checks the OEM label, but denies that DOS 3.2 checks it as well
(although it does).

19. Matthias Paul (2004-08-25). "NOVOLTRK.REG" (http://www.ibiblio.org/pub/micro/pc-stuff/freedos/win9x/NOVOLTRK.
ZIP). www.drdos.org. Retrieved 2011-12-17.

20. "Troubleshooting Disks and File Systems" (https://technet.microsoft.com/en-us/library/bb457122.aspx). Microsoft
TechNet. 2005-11-05. Retrieved 2014-06-15.

21. IBM (1983). IBM PC Technical Reference Handbook. Comment: Includes a complete listing of the ROM BIOS source
code of the original IBM PC.

22. Hans-Dieter Jankowski, Dietmar Rabich, Julian F. Reschke (1992). Atari Profibuch ST-STE-TT. Sybex, 4th edition,
12th batch. ISBN 3-88745-888-5, ISBN 978-3-88745-888-1.

23. Seagate Technologies, "The Transition to Advanced Format 4K Sector Hard Drives (archived by Wayback Machine
@Archive.org)", 2010 ([4] (https://web.archive.org/web/20110902031330/http://seagate.com/docs/pdf/whitepaper/tp61
3_transition_to_4k_sectors.pdf)).

24. Ralf Brown (2002-12-29). "The x86 Interrupt List" (http://www.cs.cmu.edu/~ralf/files.html). Retrieved 2011-10-14.
25. de Boyne Pollard, Jonathan (2010) [2006]. "All about BIOS parameter blocks" (https://jdebp.eu./FGA/bios-parameter-b

lock.html). Frequently Given Answers. Retrieved 2014-06-02.
26. Microsoft MS-DOS Programmer's Reference: version 5.0. Microsoft press. 1991. ISBN 1-55615-329-5.
27. "Standard Floppy Disk Formats Supported by MS-DOS" (http://support.microsoft.com/kb/75131). Microsoft Help and

Support. 2003-05-12. Retrieved 2012-09-11.

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16948
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Aaron_R._Reynolds
https://www.google.com/patents?id=bUohAAAAEBAJ
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Ralf_Brown
https://en.wikipedia.org/wiki/Addison_Wesley
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-63287-X
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-63287-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-60835-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-60835-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-89090-368-1
http://thestarman.narod.ru/DOS/ibm100/Boot.htm#AuthID
http://thestarman.narod.ru/DOS/ibm110/Boot.htm#AuthID
https://groups.google.com/group/alt.msdos.programmer/msg/6b10a1ea602e61e
http://groups.google.co.uk/group/comp.os.msdos.programmer/msg/79de2d76832cfbd6
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-878830-02-3
http://www.o3one.org/hwdocs/bios_doc/dosref22.html
http://www.ibiblio.org/pub/micro/pc-stuff/freedos/win9x/NOVOLTRK.ZIP
https://technet.microsoft.com/en-us/library/bb457122.aspx
https://en.wikipedia.org/wiki/Microsoft_TechNet
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-88745-888-5
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-88745-888-1
https://web.archive.org/web/20110902031330/http://seagate.com/docs/pdf/whitepaper/tp613_transition_to_4k_sectors.pdf
http://www.cs.cmu.edu/~ralf/files.html
https://jdebp.eu./FGA/bios-parameter-block.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-55615-329-5
http://support.microsoft.com/kb/75131

28. Microsoft (1987-07). MS-DOS 3.3 Programmer's Reference.
29. Andries Brouwer (2002-09-20). "The FAT file system" (http://www.win.tue.nl/~aeb/linux/fs/fat/fat.html). Retrieved

2011-10-16.
30. Paterson, Tim; Microsoft (2013-12-19) [1983]. "Microsoft DOS V1.1 and V2.0: /msdos/v20source/SKELIO.TXT,

/msdos/v20source/HRDDRV.ASM" (http://www.computerhistory.org/atchm/microsoft-research-license-agreement-msd
os-v1-1-v2-0/). Computer History Museum, Microsoft. Retrieved 2014-03-25. (NB. While the publishers claim this
would be MS-DOS 1.1 and 2.0, it actually is SCP MS-DOS 1.25 and a mixture of Altos MS-DOS 2.11 and TeleVideo
PC DOS 2.11.)

31. Zbikowski, Mark; Allen, Paul; Ballmer, Steve; Borman, Reuben; Borman, Rob; Butler, John; Carroll, Chuck;
Chamberlain, Mark; Chell, David; Colee, Mike; Courtney, Mike; Dryfoos, Mike; Duncan, Rachel; Eckhardt, Kurt;
Evans, Eric; Farmer, Rick; Gates, Bill; Geary, Michael; Griffin, Bob; Hogarth, Doug; Johnson, James W.; Kermaani,
Kaamel; King, Adrian; Koch, Reed; Landowski, James; Larson, Chris; Lennon, Thomas; Lipkie, Dan; McDonald, Marc;
McKinney, Bruce; Martin, Pascal; Mathers, Estelle; Matthews, Bob; Melin, David; Mergentime, Charles; Nevin, Randy;
Newell, Dan; Newell, Tani; Norris, David; O'Leary, Mike; O'Rear, Bob; Olsson, Mike; Osterman, Larry; Ostling, Ridge;
Pai, Sunil; Paterson, Tim; Perez, Gary; Peters, Chris; Petzold, Charles; Pollock, John; Reynolds, Aaron; Rubin, Darryl;
Ryan, Ralph; Schulmeisters, Karl; Shah, Rajen; Shaw, Barry; Short, Anthony; Slivka, Ben; Smirl, Jon; Stillmaker,
Betty; Stoddard, John; Tillman, Dennis; Whitten, Greg; Yount, Natalie; Zeck, Steve (1988). "Technical advisors". The
MS-DOS Encyclopedia: versions 1.0 through 3.2. By Duncan, Ray; Bostwick, Steve; Burgoyne, Keith; Byers, Robert
A.; Hogan, Thom; Kyle, Jim; Letwin, Gordon; Petzold, Charles; Rabinowitz, Chip; Tomlin, Jim; Wilton, Richard;
Wolverton, Van; Wong, William; Woodcock, JoAnne (Completely reworked ed.). Redmond, Washington, USA:
Microsoft Press. ISBN 1-55615-049-0. LCCN 87-21452 (https://lccn.loc.gov/87-21452). OCLC 16581341 (https://www.
worldcat.org/oclc/16581341). (xix+1570 pages; 26 cm) (NB. This edition was published in 1988 after extensive rework
of the withdrawn 1986 first edition by a different team of authors. [5] (https://www.pcjs.org/pubs/pc/reference/microsoft/
mspl13/msdos/encyclopedia/))

32. "Detailed Explanation of FAT Boot Sector" (http://support.microsoft.com/kb/140418). Microsoft Knowledge Base.
2003-12-06. Retrieved 2011-10-16.

33. Lai, Robert S.; The Waite Group (1987). Writing MS-DOS Device Drivers (2nd ed.). Addison Wesley. ISBN 0-201-
60837-5.

34. Paterson, Tim; Microsoft (2013-12-19) [1983]. "Microsoft DOS V1.1 and V2.0: /msdos/v20source/DEVDRIV.txt" (http://
www.computerhistory.org/atchm/microsoft-research-license-agreement-msdos-v1-1-v2-0/). Computer History
Museum, Microsoft. Retrieved 2014-03-25. (NB. While the publishers claim this would be MS-DOS 1.1 and 2.0, it
actually is SCP MS-DOS 1.25 and a mixture of Altos MS-DOS 2.11 and TeleVideo PC DOS 2.11.)

35. Tim Paterson (1983). "An Inside Look at MS-DOS" (https://web.archive.org/web/20110720115141/http://patersontech.
com/Dos/Byte/InsideDos.htm#InsideDos_44). Byte. Archived from the original (http://www.patersontech.com/dos/Byt
e/InsideDos.htm#InsideDos_44) on 2011-07-20. Retrieved 2011-07-18. "The numbering starts with 2; the first two
numbers, 0 and 1, are reserved."

36. PORT-DOS - Userprompt Guide for Apricot Portable. User-Prompt Guides, UK ([6] (http://actapricot.org/support/aprico
t_user_prompt_guide_portable.pdf)).

37. John Elliott (1998). DOSPLUS disc formats. ([7] (http://www.seasip.demon.co.uk/Cpm/fat_formats.html)).
38. The BBC Master 512. Yellow Pig's BBC Computer Pages ([8] (http://www.cowsarenotpurple.co.uk/bbccomputer/maste

r512/format.html)).
39. Digital Equipment Corporation. Rainbow 100 MS-DOS 2.01 Technical Documentation Volume 1 (QV025-GZ),

Microsoft MS-DOS Operating System BIOS Listing (AA-X432A-TV), Universal Disk Driver, Page 1-17. 1983.
40. "Detailed Explanation of FAT Boot Sector" (http://www.dewassoc.com/kbase/hard_drives/boot_sector.htm). DEW

Associates Corporation. 2002. Retrieved 2011-10-16.
41. Daniel B. Sedory. Detailed Notes on the "Dirty Shutdown Flag" under MS-Windows. 2001-12-04. ([9] (http://thestarma

n.narod.ru/DOS/DirtyShutdownFlag.html)).
42. "Windows 98 Resource Kit - Chapter 10 - Disks and File Systems" (https://technet.microsoft.com/en-us/library/cc7681

80.aspx). Microsoft TechNet. 1998. Retrieved 2012-07-16.
43. Peter Norton (1986). Inside the IBM PC, Revised and Enlarged, Brady. ISBN 0-89303-583-1, p. 157.

https://en.wikipedia.org/wiki/Andries_Brouwer
http://www.win.tue.nl/~aeb/linux/fs/fat/fat.html
https://en.wikipedia.org/wiki/Tim_Paterson
http://www.computerhistory.org/atchm/microsoft-research-license-agreement-msdos-v1-1-v2-0/
https://en.wikipedia.org/wiki/Computer_History_Museum
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/SCP_MS-DOS_1.25
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/TeleVideo_PC_DOS_2.11
https://en.wikipedia.org/wiki/Mark_Zbikowski
https://en.wikipedia.org/wiki/Paul_Allen
https://en.wikipedia.org/wiki/Steve_Ballmer
https://en.wikipedia.org/wiki/Bill_Gates
https://en.wikipedia.org/wiki/Marc_McDonald
https://en.wikipedia.org/wiki/Bob_O%27Rear
https://en.wikipedia.org/wiki/Tim_Paterson
https://en.wikipedia.org/wiki/Charles_Petzold
https://en.wikipedia.org/wiki/Aaron_R._Reynolds
https://en.wikipedia.org/wiki/Gordon_Letwin
https://en.wikipedia.org/wiki/Charles_Petzold
https://en.wikipedia.org/wiki/Microsoft_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-55615-049-0
https://en.wikipedia.org/wiki/Library_of_Congress_Control_Number
https://lccn.loc.gov/87-21452
https://en.wikipedia.org/wiki/OCLC
https://www.worldcat.org/oclc/16581341
https://www.pcjs.org/pubs/pc/reference/microsoft/mspl13/msdos/encyclopedia/
http://support.microsoft.com/kb/140418
https://en.wikipedia.org/wiki/Microsoft_Knowledge_Base
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-60837-5
https://en.wikipedia.org/wiki/Tim_Paterson
http://www.computerhistory.org/atchm/microsoft-research-license-agreement-msdos-v1-1-v2-0/
https://en.wikipedia.org/wiki/Computer_History_Museum
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/SCP_MS-DOS_1.25
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/TeleVideo_PC_DOS_2.11
https://en.wikipedia.org/wiki/Tim_Paterson
https://web.archive.org/web/20110720115141/http://patersontech.com/Dos/Byte/InsideDos.htm#InsideDos_44
https://en.wikipedia.org/wiki/Byte_(magazine)
http://www.patersontech.com/dos/Byte/InsideDos.htm#InsideDos_44
http://actapricot.org/support/apricot_user_prompt_guide_portable.pdf
http://www.seasip.demon.co.uk/Cpm/fat_formats.html
http://www.cowsarenotpurple.co.uk/bbccomputer/master512/format.html
http://www.dewassoc.com/kbase/hard_drives/boot_sector.htm
http://thestarman.narod.ru/DOS/DirtyShutdownFlag.html
https://technet.microsoft.com/en-us/library/cc768180.aspx
https://en.wikipedia.org/wiki/Microsoft_TechNet
https://en.wikipedia.org/wiki/Peter_Norton
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-89303-583-1

44. Andries Brouwer. "FAT under Linux" (http://www.win.tue.nl/~aeb/linux/fs/fat/fat-2.html).
45. Andries Brouwer (2002-09-20). "FAT" (http://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html#ss1.3). Retrieved 2012-01-11.
46. "Limitations of FAT32 File System" (http://support.microsoft.com/kb/184006). Microsoft Knowledge Base. 2007-03-26.

Retrieved 2011-08-21. "Clusters cannot be 64 kilobytes or larger"
47. Duncan, Ray (1989). "Design goals and implementation of the new High Performance File System" (http://cd.textfiles.

com/megademo2/INFO/OS2_HPFS.TXT). Microsoft Systems Journal. [NB. This particular text file has a number of
OCR errors; e.g., "Ray" is the author's correct name; not 'Roy' as the text shows.]

48. Chen, Raymond (July 2006). "Microsoft TechNet: A Brief and Incomplete History of FAT32" (http://www.microsoft.com/
technet/technetmag/issues/2006/07/WindowsConfidential/). Microsoft TechNet Magazine.

49. Les Bell; Associates Pty Ltd (1996-09-02) [1990]. "OS/2 High Performance File System" (http://www.lesbell.com.au/hp
fstest.html). PC Support Advisor. Retrieved 2014-06-24.

50. Bridges, Dan (February 1996). "Inside the High Performance File System - Part 2/6: Introduction" (http://www.edm2.co
m/0411/hpfs2.html). Significant Bits, Brisbug PC User Group Inc. Retrieved 2014-06-24.

51. Seattle Computer Products (1981). "SCP 86-DOS 1.0 Addendum" (http://bitsavers.informatik.uni-stuttgart.de/pdf/seattl
eComputer/86-DOS_1.0_Addendum.pdf) (PDF). Retrieved 2013-03-10.

52. Matthias Paul (1997-07-30). NWDOS-TIPs — Tips & Tricks rund um Novell DOS 7, mit Blick auf undokumentierte
Details, Bugs und Workarounds (http://www.antonis.de/dos/dos-tuts/mpdostip/html/nwdostip.htm) (e-book).
MPDOSTIP (in German) (edition 3, release 157 ed.). Retrieved 2012-01-11. NWDOSTIP.TXT is a comprehensive
work on Novell DOS 7 and OpenDOS 7.01, including the description of many undocumented features and internals. It
is part of the author's yet larger MPDOSTIP.ZIP collection maintained up to 2001 and distributed on many sites at the
time. The provided link points to a HTML-converted older version of the NWDOSTIP.TXT file.

53. IBM. 4690 OS User's Guide Version 5.2, IBM document SC30-4134-01, 2008-01-10 ([10] (ftp://ftp.software.ibm.com/s
oftware/retail/pubs/sw/opsys/4690/ver5r2/bsf1_UG_mst.pdf)).

54. Paterson, Tim; Microsoft (2013-12-19) [1983]. "Microsoft DOS V1.1 and V2.0: /msdos/v20source/FORMAT.TXT" (htt
p://www.computerhistory.org/atchm/microsoft-research-license-agreement-msdos-v1-1-v2-0/). Computer History
Museum, Microsoft. Retrieved 2014-03-25. (NB. While the publishers claim this would be MS-DOS 1.1 and 2.0, it
actually is SCP MS-DOS 1.25 and a mixture of Altos MS-DOS 2.11 and TeleVideo PC DOS 2.11.)

55. Shustek, Len (2014-03-24). "Microsoft MS-DOS early source code" (http://www.computerhistory.org/atchm/microsoft-
ms-dos-early-source-code/). Software Gems: The Computer History Museum Historical Source Code Series.
Retrieved 2014-03-29. (NB. While the author claims this would be MS-DOS 1.1 and 2.0, it actually is SCP MS-DOS
1.25 and a mixture of Altos MS-DOS 2.11 and TeleVideo PC DOS 2.11.)

56. Levin, Roy (2014-03-25). "Microsoft makes source code for MS-DOS and Word for Windows available to public" (htt
p://blogs.technet.com/b/microsoft_blog/archive/2014/03/25/microsoft-makes-source-code-for-ms-dos-and-word-for-wi
ndows-available-to-public.aspx). Official Microsoft Blog. Retrieved 2014-03-29. (NB. While the author claims this
would be MS-DOS 1.1 and 2.0, it actually is SCP MS-DOS 1.25 and a mixture of Altos MS-DOS 2.11 and TeleVideo
PC DOS 2.11.)

57. Caldera (1997). Caldera OpenDOS Machine Readable Source Kit 7.01. The FDOS.EQU file in the machine readable
source kit has equates for the corresponding directory entries.

58. John Elliott (1998). CP/M 4.1 disc formats. ([11] (http://www.seasip.demon.co.uk/Cpm/format41.html)): "CP/M 4.1
(DOS Plus [1.2]) allows the use of two file systems - CP/M and DOS. The version [...] supplied with the Amstrad
PC1512 cannot handle larger floppies than 360k (CP/M) / 1.2Mb (DOS), or larger hard drive partitions than 32Mb. [...]
The DOS file system can be either FAT12 or FAT16. The format is exactly as in PCDOS 2.11, except: Byte 0Ch of the
directory entry [...] holds the four "user attributes" F1'-F4' [...] DRDOS-style passwords are not supported."

59. vinDaci (1998-01-06). "Long Filename Specification" (http://www.teleport.com/~brainy/lfn.htm). Retrieved 2007-03-13.
60. Henk Kelder. FAT32.TXT for FAT32.IFS version 0.74. ("Archived copy" (https://web.archive.org/web/20120330171510/

http://macarlo.com/fat32v074.htm). Archived from the original (http://macarlo.com/fat32v074.htm) on 2012-03-30.
Retrieved 2012-01-14.). Comment: This older version of the README file still discusses the old 0xEA and 0xEC
magic values.

https://en.wikipedia.org/wiki/Andries_Brouwer
http://www.win.tue.nl/~aeb/linux/fs/fat/fat-2.html
https://en.wikipedia.org/wiki/Andries_Brouwer
http://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html#ss1.3
http://support.microsoft.com/kb/184006
https://en.wikipedia.org/wiki/Microsoft_Knowledge_Base
http://cd.textfiles.com/megademo2/INFO/OS2_HPFS.TXT
https://en.wikipedia.org/wiki/Raymond_Chen_(Microsoft)
http://www.microsoft.com/technet/technetmag/issues/2006/07/WindowsConfidential/
http://www.lesbell.com.au/hpfstest.html
http://www.edm2.com/0411/hpfs2.html
http://bitsavers.informatik.uni-stuttgart.de/pdf/seattleComputer/86-DOS_1.0_Addendum.pdf
http://www.antonis.de/dos/dos-tuts/mpdostip/html/nwdostip.htm
ftp://ftp.software.ibm.com/software/retail/pubs/sw/opsys/4690/ver5r2/bsf1_UG_mst.pdf
https://en.wikipedia.org/wiki/Tim_Paterson
http://www.computerhistory.org/atchm/microsoft-research-license-agreement-msdos-v1-1-v2-0/
https://en.wikipedia.org/wiki/Computer_History_Museum
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/SCP_MS-DOS_1.25
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/TeleVideo_PC_DOS_2.11
http://www.computerhistory.org/atchm/microsoft-ms-dos-early-source-code/
https://en.wikipedia.org/wiki/SCP_MS-DOS_1.25
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/TeleVideo_PC_DOS_2.11
http://blogs.technet.com/b/microsoft_blog/archive/2014/03/25/microsoft-makes-source-code-for-ms-dos-and-word-for-windows-available-to-public.aspx
https://en.wikipedia.org/wiki/SCP_MS-DOS_1.25
https://en.wikipedia.org/wiki/Altos_MS-DOS_2.11
https://en.wikipedia.org/wiki/TeleVideo_PC_DOS_2.11
http://www.seasip.demon.co.uk/Cpm/format41.html
http://www.teleport.com/~brainy/lfn.htm
https://web.archive.org/web/20120330171510/http://macarlo.com/fat32v074.htm
http://macarlo.com/fat32v074.htm

ECMA-107 Volume and File Structure of Disk Cartridges for Information Interchange (http://www.ecma-international.or
g/publications/standards/Ecma-107.htm), identical to ISO/IEC 9293.
Microsoft Extensible Firmware Initiative FAT32 File System Specification, FAT: General Overview of On-Disk Format
(http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx)
Understanding FAT32 file systems (explained for embedded firmware developers) (http://www.pjrc.com/tech/8051/ide/f
at32.html)
Understanding FAT (http://users.iafrica.com/c/cq/cquirke/fat.htm) including lots of info about LFNs
Detailed Explanation of FAT Boot Sector (http://support.microsoft.com/kb/140418/): Microsoft Knowledge Base Article
140418
Description of the FAT32 File System (http://support.microsoft.com/kb/154997/): Microsoft Knowledge Base Article
154997
FAT12/FAT16/FAT32 file system implementation for *nix (http://sourceforge.net/projects/libfat/): Includes libfat libraries
and fusefat, a FUSE file system driver
MS-DOS: Directory and Subdirectory Limitations (http://support.microsoft.com/kb/39927/): Microsoft Knowledge Base
Article 39927

61. Henk Kelder (2003). FAT32.TXT for FAT32.IFS version 0.9.13." ([12] (http://svn.netlabs.org/repos/fat32/branches/fat32
-0.9/src/fat32.txt)): "This byte [...] is not modified while running Windows 95 and neighter by SCANDISK or DEFRAG.
[...] If another program sets the value to 0x00 for a file that has EAs these EAs will no longer be found using
DosFindFirst/Next calls only. The other OS/2 calls for retrieving EAs (DosQueryPathInfo, DosQueryFileInfo and
DosEnumAttribute) do not rely on this byte. Also the opposite could [...] occur. [...] In this situation only the
performance of directory scans will be decreased. Both situations [...] are corrected by CHKDSK".

62. Netlabs. FAT32.IFS Wiki and Sources. ([13] (http://svn.netlabs.org/fat32/wiki/WikiStart)).
63. IBM. 4690 OS Programming Guide Version 5.2, IBM document SC30-4137-01, 2007-12-06 ([14] (ftp://ftp.software.ib

m.com/software/retail/pubs/sw/opsys/4690/ver5r2/bsi1_PG_mst.pdf)).
64. OpenDOS Developer's Reference Series — System and Programmer's Guide — Programmer's Guide (https://web.ar

chive.org/web/20171007025631/http://www.drdos.net:80/documentation/sysprog/httoc.htm). Caldera, Inc. August
1997. Caldera Part No. 200-DODG-003. Archived from the original (http://www.drdos.net/documentation/sysprog/htto
c.htm) on 2017-10-07. (Printed in the UK.)

65. Bob Eager, Tavi Systems (2000-10-28). Implementation of extended attributes on the FAT file system. ([15] (http://ww
w.tavi.co.uk/os2pages/eadata.html)).

66. IBM (2003). Information about 4690 OS unique file distribution attributes, IBM document R1001487, 2003-07-30.
("Archived copy" (https://web.archive.org/web/20140521070339/http://www-01.ibm.com/support/docview.wss?uid=pos
1R1001487). Archived from the original (http://www-01.ibm.com/support/docview.wss?uid=pos1R1001487) on 2014-
05-21. Retrieved 2014-05-20.): "[...] file types are stored in the "Reserved bits" portion of the PC-DOS file directory
structure [...] only 4690 respects and preserves these attributes. Various non-4690 operating systems take different
actions if these bits are turned on [...] when copying from a diskette created on a 4690 system. [...] PC-DOS and
Windows 2000 Professional will copy the file without error and zero the bits. OS/2 [...] 1.2 [...] will refuse to copy the
file unless [...] first run CHKDSK /F on the file. After [...] CHKDSK, it will copy the file and zero the bits. [...] when [...]
copy [...] back to the 4690 system, [...] file will copy as a local file."

67. IBM. 4690 save and restore file distribution attributes. IBM document R1000622, 2010-08-31 ("Archived copy" (https://
web.archive.org/web/20140521070536/http://www-01.ibm.com/support/docview.wss?uid=pos1R1000622). Archived
from the original (http://www-01.ibm.com/support/docview.wss?uid=pos1R1000622) on 2014-05-21. Retrieved
2014-05-20.).

68. Natuerlich! (1992-03-24). "Getting longer filenames out of GEMDOS" (https://groups.google.com/forum/?_escaped_fr
agment_=topic/comp.sys.atari.st.tech/ADwk_y6-nYg#!topic/comp.sys.atari.st.tech/ADwk_y6-nYg).
comp.sys.atari.st.tech. Retrieved 2014-05-05.

69. Torvalds, Linus (1992-12-23). "Long filenames" (https://groups.google.com/forum/?_escaped_fragment_=topic/comp.o
s.minix/0rgZpprg_Eo#!topic/comp.os.minix/0rgZpprg_Eo). comp.os.minix. Retrieved 2014-05-05.

70. "mount(8): mount file system" (http://linux.die.net/man/8/mount). Linux man page.

External links

http://www.ecma-international.org/publications/standards/Ecma-107.htm
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://www.pjrc.com/tech/8051/ide/fat32.html
http://users.iafrica.com/c/cq/cquirke/fat.htm
http://support.microsoft.com/kb/140418/
http://support.microsoft.com/kb/154997/
http://sourceforge.net/projects/libfat/
http://support.microsoft.com/kb/39927/
http://svn.netlabs.org/repos/fat32/branches/fat32-0.9/src/fat32.txt
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/SCANDISK
https://en.wikipedia.org/w/index.php?title=DEFRAG&action=edit&redlink=1
https://en.wikipedia.org/wiki/Extended_attributes
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/CHKDSK
http://svn.netlabs.org/fat32/wiki/WikiStart
ftp://ftp.software.ibm.com/software/retail/pubs/sw/opsys/4690/ver5r2/bsi1_PG_mst.pdf
https://web.archive.org/web/20171007025631/http://www.drdos.net:80/documentation/sysprog/httoc.htm
https://en.wikipedia.org/wiki/Caldera,_Inc.
http://www.drdos.net/documentation/sysprog/httoc.htm
http://www.tavi.co.uk/os2pages/eadata.html
https://web.archive.org/web/20140521070339/http://www-01.ibm.com/support/docview.wss?uid=pos1R1001487
http://www-01.ibm.com/support/docview.wss?uid=pos1R1001487
https://web.archive.org/web/20140521070536/http://www-01.ibm.com/support/docview.wss?uid=pos1R1000622
http://www-01.ibm.com/support/docview.wss?uid=pos1R1000622
https://groups.google.com/forum/?_escaped_fragment_=topic/comp.sys.atari.st.tech/ADwk_y6-nYg#!topic/comp.sys.atari.st.tech/ADwk_y6-nYg
https://en.wikipedia.org/wiki/Linus_Torvalds
https://groups.google.com/forum/?_escaped_fragment_=topic/comp.os.minix/0rgZpprg_Eo#!topic/comp.os.minix/0rgZpprg_Eo
http://linux.die.net/man/8/mount

Overview of FAT, HPFS, and NTFS File Systems (http://support.microsoft.com/kb/100108/): Microsoft Knowledge
Base Article 100108
Volume and file size limits of FAT file systems (https://web.archive.org/web/20060307082555/http://www.microsoft.co
m/technet/prodtechnol/winxppro/reskit/c13621675.mspx): Microsoft Technet, copy made by Internet Archive Wayback
Machine (https://archive.org/)
Microsoft TechNet: A Brief and Incomplete History of FAT32 (http://www.microsoft.com/technet/technetmag/issues/200
6/07/WindowsConfidential/) by Raymond Chen
FAT32 Formatter (http://www.ridgecrop.demon.co.uk/index.htm?fat32format.htm): allows formatting volumes larger
than 32 GB with FAT32 under Windows 2000, Windows XP and Windows Vista
Fdisk does not recognize full size of hard disks larger than 64 GB (http://support.microsoft.com/kb/263044): Microsoft
Knowledge Base Article 263044.
Microsoft Windows XP: FAT32 File System (https://web.archive.org/web/20050319235548/http://www.microsoft.com/r
esources/documentation/Windows/XP/all/reskit/en-us/prkc_fil_cycz.asp). Copy made by Internet Archive Wayback
Machine (https://archive.org/) of an article with summary of limits in FAT32 which is no longer available on Microsoft
website.
Visual Layout of a FAT16 drive (http://www.beginningtoseethelight.org/fat16/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Design_of_the_FAT_file_system&oldid=879589468"

This page was last edited on 22 January 2019, at 05:30 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation,
Inc., a non-profit organization.

http://support.microsoft.com/kb/100108/
https://web.archive.org/web/20060307082555/http://www.microsoft.com/technet/prodtechnol/winxppro/reskit/c13621675.mspx
https://archive.org/
http://www.microsoft.com/technet/technetmag/issues/2006/07/WindowsConfidential/
https://en.wikipedia.org/wiki/Raymond_Chen_(Microsoft)
http://www.ridgecrop.demon.co.uk/index.htm?fat32format.htm
https://en.wikipedia.org/wiki/Windows_2000
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/Windows_Vista
http://support.microsoft.com/kb/263044
https://web.archive.org/web/20050319235548/http://www.microsoft.com/resources/documentation/Windows/XP/all/reskit/en-us/prkc_fil_cycz.asp
https://archive.org/
http://www.beginningtoseethelight.org/fat16/
https://en.wikipedia.org/w/index.php?title=Design_of_the_FAT_file_system&oldid=879589468
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

