
 Deduplication

Deduplication

Deduplication is a form of compression. At a high level, deduplication systems

1. identify duplicate objects, and

2. eliminate redundant copies of information

How the system defines and "object" and how the system defines a "redundant copy" is system specific.

Deduplication systems can be defined along several axes.

On‑line vs. offline

In on‑line dedup systems, the deduplication process happens at the time that data is written. A typical online deduplication

system works as follows:

1. When a write request is received (before data is actually written), the system is checked for duplicate copies.

If the object is found to be unique, then the object is written as normal.

If a duplicate object is found in the system, the new object is not written; instead, a reference to the original is written

in its place.

In off‑line dedup systems, the deduplication process happens after data is already persisted. A typical offline

deduplication system will have a background process that scans data, and replaces duplicate objects with references to a

common copy.

Fingerprinting

Fingerprints are unique content identifies. Scanning a system and comparing all objects byte‑by‑byte is impractical, so a

cryptographic hash is used as a unique ID. Then, to compare objects (regardless of their size), you only need to compare

their fingerprints.

For this to work, the probability of collision must be close‑to‑zero. A collision is a correctness error

We often choose hash functions and hash sizes so that the probability of a collision is less likely than the probability of

a hardware error.

 



Chunking

Chunking is the process of breaking data into objects. Chunks can be whole‑file objects, fixed‑size chunks, or variable‑

sized chunks.

Whole‑file deduplication is simple and often low‑overhead. If two files are exact copies, only one is written.

Subsequent copies store references to the original.

The amount of metadata required to keep track of all objects in the system is quite low.

Any modification to a file requires unique copies to be made, which means that the system has a lower

compression ratio.

Fixed‑size chunks are often defined in sizes that are multiples of system hardware parameters, like memory pages or

disk sectors.

The process of defining chunks is easy

If a single chunk is modified, common chunks can still be shared

If data shifts, for example after an insertion of a byte at the head of a file, then all subsequent chunks will shift.

Thus, local changes can falsely cause duplicates to be treated as unique

Variable sized chunks are often defined by the contents of a file.

If a single chunk is modified, common chunks can still be shared

If data shifts, then it is unlikely that nearby chunk boundaries are affected, since the boundaries are determined

by the contents

Chunk Size

Large chunks require less metadata overheads, but usually result in lower deduplication ratios.

Small chunks require more metadata overhead to index, but usually have higher deduplication ratios

Indexing

The chunk index can be a bottleneck in large deduplication systems, since it likely will not fit into RAM. Hashes are

randomly distributed, so fingerprint index lookups often have no locality.

Bloom filters can be used to detect whether a fingerprint exists, eliminating the need for some unnecessary lookups.

Some systems group fingerprints into groups on disk. If groups are defined by temporal locality, then caching and

evicting based groups may improve cache efficiency

Question: how would you define the appropriate "group" for a very common chunk (e.g., the chunk is common to

many unrelated files, each with their own fingerprint group)


