
Deduplication

CSCI 333
Spring 2019

Logistics

• Lab 2a/b
• Final Project
• Final Exam
• Grades

2

Last Class

• BetrFS [FAST ‘15]

– Linux file system using Be-trees
• Metadata Be-tree: path -> struct stat
• Data in Be-tree: path|{block#} -> 4KiB block

– Schema maps VFS operations to efficient Be-tree
operations
• Upserts, Range queries

– Next iteration [FAST ‘16] : fixed slowest operations
• Rangecast delete messages
• “Zones”
• Late-binding journal

3

This Class

• Introduction to Deduplication
– Big picture idea
– Design choices and tradeoffs
– Open questions

• Slides from Gala Yadgar & Geoff Kuenning,
presented at Dagstuhl

• I’ve added new slides (slides without borders)
for extra context

4

Deduplication

Geoff Kuenning Gala Yadgar

Sources of Duplicates
• Different people store the same files
– Shared documents, code development
– Popular photos, videos, etc.

• May also share blocks
– Attachments
– Configuration files
– Company logo and other headers

à Deduplication!
6

Deduplication

• Dedup(e) is one form of compression
• High-level goal: identify duplicate objects and

eliminate redundant copies
– How should we define a duplicate object?
– What makes a copy “redundant”?

• Answers are application-dependent and some
of the more interesting research questions!

7

857 Desktops at Microsoft

D. Meyer, W. Bolosky. A Study of Practical Deduplication. FAST 2011
8

“Naïve” Deduplication
For each new file

Compare each block to all existing blocks
If new, write block and add pointer
If duplicate, add pointer to existing copy

9

File1 File3File2

Are we done?

Identifying Duplicates

• It’s unreasonable to “Compare each block to all
existing blocks”

àFingerprints
Cryptographic hash of block content
Low collision probability

10

RAM

Dedup Fingerprints
• Goal: uniquely identify an object’s contents
• How big should a fingerprint be?
– Ideally, large enough that the probability of a collision is

lower than the probability of a hardware error
• MD5: 16-byte hash
• SHA-1: 20-byte hash

• Technique: system stores a map (index) between each
object’s fingerprint and each object’s location
– Compare a new object’s fingerprint against all existing

fingerprints, looking for a match
– Scales with number of unique objects, not size of objects

11

Identifying Duplicates

• It’s unreasonable to “Compare each block to all
existing blocks”

àFingerprints
Cryptographic hash of block content
Low collision probability

• It’s also unreasonable to compare to all fingerprints…
àFingerprint cache

12

RAM

RAM

Fingerprint Lookup
• How should we store the fingerprints?
• Every unique block is a miss à miss rate ≥ 40%
• One solution: Bloom filter

• Challenge: 2% false positive rate à 1TB for 4PB of data
13

RAM

Insert Insert

Lookup
(negative)

Lookup
(false positive)

lookup

How To Implement a Cache?

• (Bloom) Filters help us determine if a
fingerprint exists
– We still need to do an I/O to find the mapping

• Locality in fingerprints?
– If we sort our index by fingerprint: cryptographic

hash destroys all notions of locality
– What if we grouped fingerprints by temporal

locality of writes?

14

Reading and Restoring

• How long does it take to read File1?
• How long does it take to read File3?

• Challenge: when is it better to store the duplicates?

15

File1 File3File2

Write Path

16

File3

File recipe

Fingerprint
index

Chunk store

lookup
Surprise

Many writes become faster!

Read Path

17

File3

File recipe

Fingerprint
index

Chunk store

lookup

Delete Path

18

File3

File recipe

Fingerprint
index

Chunk store

lookup

Reference
counters: 1 2 1 2 11 2

• Challenge: storing reference counts
– Physically separate from the chunks

Chunking

• Chunking: splitting files into blocks
• Fixed-size chunks: usually aligned to device blocks
• What is the best chunk size?

19

File1 File2

File1 File2

Updates and Versions

• Best case:
aabbccdd

àaAbbccdd
• Worst case:

aabbccdd
àaAabbccdd

20

File1 File1a

File1b

Ideally…

File1b

à aAa010bb010cc010dd

Variable-Size Chunks

• Basic idea: chunk boundary is triggered by a
random string

• For example: 010
• aa010bb010cc010dd

• Triggers should be:
– Not too short/long
– Not too popular (000000…)
– Easy to identify

21

Identifying Chunk Boundaries

• 48-byte triggers (empirically, this works)

• Define a set of possible triggers
àK highest bits of the hash are == 0

àRabin fingerprints do this efficiently

à “systems” solutions for corner cases

• Challenge: parallelize this process

22

…010110010011001110100100100110011001001001100110000…

0010001001
0000000101

Fingerprint

Boundary!K=5

Rabin Fingerprints

• “The polynomial representation of the data
modulo a predetermined irreducible
polynomial” [LBFS sosp01]

• What/why Rabin fingerprints?
– Calculates a rolling hash
– “Slide the window” in a constant number of

operations (intuition: we “add” a new byte and
“subtract” an old byte to slide the window by one)

– Define a “chunk” once our window’s hash
matches our target value (i.e., we hit a trigger)

23

Defining chunk boundaries
• Tradeoff between small and large chunks?
– Finer granularity of sharing vs. metadata overhead

• With process just described, how might we:
– Produce a very small chunk?
– Produce a very large chunk?

• How might we modify our chunking algorithm to
give us “reasonable” chunk sizes?
– To avoid small chunks: don’t consider boundaries until

minimum size threshold
– To avoid large chunks: as soon as we reach a

maximum threshold, insert a chunk boundary

24

Distributed Storage
Increase storage capacity and performance with
multiple storage servers
• Each server is a separate machine

(CPU,RAM,HDD/SSD)
• Data access is distributed between servers
G Scalability

Increase capacity with data growth
G Load balancing

Independent of workload
G Failure handling

Network, nodes and devices always fail
25

Distributed Deduplication

• Where/when should we look for duplicates?
• Where should we store each file?

26

File1 File3File2

Challenges (aka Summary)

à Wonderful
theory problems!

27

Approximate membership query structures (AMQ)

…010110010011001110100100100110011001001001100110000…
Parallelizing chunking

Size of fingerprint
dictionary

1 2 1 2 11 2

Bidirectional indexing of chunks

Next Class?

• Specific dedup system(s) (4)
• Mapreduce (+ write-optimized) (2)
• Google file system (1)
• RAID (3)

28

Final Project Discussion

• Get with your group
• Find another group
• Pitch your project / show them your proposal
– React/revise

29

