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Last Class

• BetrFS [FAST ‘15]

– Linux file system using Be-trees
• Metadata Be-tree: path -> struct stat
• Data in Be-tree: path|{block#} -> 4KiB block

– Schema maps VFS operations to efficient Be-tree 
operations
• Upserts, Range queries

– Next iteration [FAST ‘16] : fixed slowest operations
• Rangecast delete messages
• “Zones”
• Late-binding journal
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This Class

• Introduction to Deduplication
– Big picture idea
– Design choices and tradeoffs
– Open questions

• Slides from Gala Yadgar & Geoff Kuenning, 
presented at Dagstuhl

• I’ve added new slides (slides without borders) 
for extra context
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Deduplication

Geoff Kuenning Gala Yadgar



Sources of Duplicates
• Different people store the same files
– Shared documents,  code development
– Popular photos, videos, etc.

• May also share blocks
– Attachments
– Configuration files
– Company logo and other headers

à Deduplication!
6



Deduplication

• Dedup(e) is one form of compression
• High-level goal: identify duplicate objects and 

eliminate redundant copies
– How should we define a duplicate object?
– What makes a copy “redundant”?

• Answers are application-dependent and some 
of the more interesting research questions!
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857 Desktops at Microsoft

D. Meyer, W. Bolosky. A Study of Practical Deduplication. FAST 2011
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“Naïve” Deduplication
For each new file

Compare each block to all existing blocks
If new, write block and add pointer
If duplicate, add pointer to existing copy
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File1 File3File2

Are we done?



Identifying Duplicates

• It’s unreasonable to “Compare each block to all 
existing blocks”

àFingerprints
Cryptographic hash of block content
Low collision probability
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Dedup Fingerprints
• Goal: uniquely identify an object’s contents
• How big should a fingerprint be?
– Ideally, large enough that the probability of a collision is 

lower than the probability of a hardware error
• MD5: 16-byte hash
• SHA-1: 20-byte hash

• Technique: system stores a map (index) between each 
object’s fingerprint and each object’s location
– Compare a new object’s fingerprint against all existing 

fingerprints, looking for a match
– Scales with number of unique objects, not size of objects
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Identifying Duplicates

• It’s unreasonable to “Compare each block to all 
existing blocks”

àFingerprints
Cryptographic hash of block content
Low collision probability

• It’s also unreasonable to compare to all fingerprints…
àFingerprint cache
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Fingerprint Lookup
• How should we store the fingerprints?
• Every unique block is a miss à miss rate ≥ 40%
• One solution: Bloom filter

• Challenge: 2% false positive rate à 1TB for 4PB of data
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How To Implement a Cache?

• (Bloom) Filters help us determine if a 
fingerprint exists
– We still need to do an I/O to find the mapping

• Locality in fingerprints?
– If we sort our index by fingerprint: cryptographic 

hash destroys all notions of locality
– What if we grouped fingerprints by temporal 

locality of writes?
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Reading and Restoring

• How long does it take to read File1?
• How long does it take to read File3?

• Challenge: when is it better to store the duplicates?
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Write Path
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File3

File recipe

Fingerprint
index

Chunk store

lookup
Surprise

Many writes become faster!



Read Path
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Delete Path
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File3

File recipe

Fingerprint
index

Chunk store

lookup

Reference 
counters: 1 2 1 2 11 2

• Challenge: storing reference counts
– Physically separate from the chunks



Chunking

• Chunking: splitting files into blocks
• Fixed-size chunks: usually aligned to device blocks 
• What is the best chunk size?
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Updates and Versions

• Best case:
aabbccdd

àaAbbccdd
• Worst case:

aabbccdd
àaAabbccdd
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File1b

Ideally…

File1b



à aAa010bb010cc010dd

Variable-Size Chunks

• Basic idea: chunk boundary is triggered by a 
random string

• For example: 010
• aa010bb010cc010dd

• Triggers should be:
– Not too short/long
– Not too popular (000000…)
– Easy to identify
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Identifying Chunk Boundaries

• 48-byte triggers (empirically, this works)

• Define a set of possible triggers
àK highest bits of the hash are == 0

àRabin fingerprints do this efficiently

à “systems” solutions for corner cases

• Challenge: parallelize this process
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…010110010011001110100100100110011001001001100110000…

0010001001
0000000101

Fingerprint

Boundary!K=5



Rabin Fingerprints

• “The polynomial representation of the data 
modulo a predetermined irreducible 
polynomial” [LBFS sosp01]

• What/why Rabin fingerprints?
– Calculates a rolling hash
– “Slide the window” in a constant number of

operations (intuition: we “add” a new byte and 
“subtract” an old byte to slide the window by one)

– Define a “chunk”  once our window’s hash 
matches our target value (i.e., we hit a trigger)
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Defining chunk boundaries
• Tradeoff between small and large chunks?
– Finer granularity of sharing vs. metadata overhead

• With process just described, how might we:
– Produce a very small chunk?
– Produce a very large chunk?

• How might we modify our chunking algorithm to 
give us “reasonable” chunk sizes?
– To avoid small chunks: don’t consider boundaries until

minimum size threshold
– To avoid large chunks: as soon as we reach a 

maximum threshold, insert a chunk boundary
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Distributed Storage 
Increase storage capacity and performance with
multiple storage servers
• Each server is a separate machine

(CPU,RAM,HDD/SSD)
• Data access is distributed between servers
G Scalability

Increase capacity with data growth
G Load balancing

Independent of workload 
G Failure handling

Network, nodes and devices always fail
25



Distributed Deduplication

• Where/when should we look for duplicates?
• Where should we store each file?
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Challenges (aka Summary)

à Wonderful 
theory problems!
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Approximate membership query structures (AMQ)

…010110010011001110100100100110011001001001100110000…
Parallelizing chunking

Size of fingerprint
dictionary 

1 2 1 2 11 2

Bidirectional indexing of chunks



Next Class?

• Specific dedup system(s) (4)
• Mapreduce (+ write-optimized) (2)
• Google file system (1)
• RAID (3)
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Final Project Discussion

• Get with your group
• Find another group
• Pitch your project / show them your proposal
– React/revise
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