
BetrFS: A path-based write-
optimized file system

CSCI 333
Spring 2019

2

• Be trees
§ Operations
§ Asymptotics

• Write optimization: tips, tricks, and secret sauce
§ Batched updates: only do work when you have

enough to do that the setup is worth it
§ Read-write asymmetry
• Blind updates whenever possible

§ Big nodes, modest fanout

Last Class

3

• The pros and cons of indirection
• How do we make a file system using Be trees?

§ Converting file system operations to kv-operations
§ Synergies with write-optimization and the OS

• Evaluating performance and being critical
• The value of iteration and rethinking designs

This Class

4

• Two conference talks on BetrFS v1 and v2
§ What is the goal of a conference talk?

§ What is the goal of a lecture?

• Why present this work?
§ Long project history, spanning 6+years
• I’ll fill in the gaps and give context, but ask questions

because I have ”the curse of knowledge”

• 4 consecutive FAST papers, 3 BP nominations, 1 BP

§ I hope you’ll poke holes!

Today’s Strategy

5

BetrFS: A right-optimized, write-
optimized file system

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng
Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael
Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter

Stony Brook University, Tokutek Inc., Rutgers University, Massachusetts Institute
of Technology

6

• Disk bandwidth spec:
125 MB/s

• Workload: 1GiB sequential
write

• ext4 bandwidth:
§ 104 MB/s

ext4 is good at sequential I/O

0

40

80

120

*higher is better

M
B/

s ext4
raw disk

Sequential I/O

7

ext4 struggles with random writes

• Disk bandwidth spec:
125 MB/s

• Workload: Small, random
writes of cached data

• ext4 write bandwidth:
§ 1.5 MB/s

0

40

80

120

*higher is better

M
B/

s ext4
raw disk

Random Overwrites

8

• Random write performance dominated by
seeks

• Back-of-the-envelope:
§ Average disk seek time is 11ms
§ Seek for every 4KB write
§ Implies maximum 0.4MB/s bandwidth
• Previous benchmark benefits from locality, good I/O

scheduling

What is going on here?

9

Ext4 Sequential I/O

10

Ext4 Random I/O

11

• Pros:
§ writing data is just an append to the log

• Cons:
§ file blocks can become scattered on disk
§ reading data becomes slow

Avoiding seeks: log-structured
file systems

Logging still presents a tradeoff between random-write
and sequential-I/O performance

12

• Use write-optimized dictionaries (WODs)
§ on-disk data structures that rapidly ingest new data

while maintaining logical locality
• Create a schema that maps file operations to

efficient WOD operations
• Implemented in the Linux kernel

§ exposed new performance opportunities

BetrFS

13

• Prior work: WODs can accelerate FS operations
§ TokuFS [Esmet, Bender, Farach-Colton, Kuszmaul ‘12], KVFS [Shetty, Spillane, Malpani,

Andrews, Seyster, and Zadok ‘13], TableFS [Ren and Gibson ‘13],

§ Prior WOFSes in user space
• BetrFS goal: explore all the ways write-optimization

can be used in a file system
§ explore the impact of write-optimization on the

interaction with the rest of the system

Advancing write-optimized FSes

14

• Bε-trees: an asymptotically optimal key-value store
• Bε-trees asymptotically dominate log-structured

merge-trees
• We use Fractal Trees, an open-source Bε-tree

implementation from Tokutek

BetrFS uses Bε-Trees

15

• Implement a dictionary on key-value pairs
§ insert(k,v)
§ v = search(k)
§ delete(k)
§ k’ = successor(k)
§ k’ = predecessor(k)

• New operation:
§ upsert(k, ƒ)

Bε-Tree Operations

16

• Queries (point and range) comparable to B-trees
§ with caching, ~1 seek + disk bandwidth
§ hundreds of random queries per second

• Extremely fast inserts
§ tens of thousands per second

Bε-trees search/insert asymmetry

17

upsert(k,ƒ)
• An upsert specifies a mutation to a value

§ e.g. increment a reference count
§ e.g. modify the 5th byte of a string

• upserts are encoded as messages and inserted
into the tree
§ defer and batch expensive queries
§ we can perform tens of thousands of upserts per

second

upsert = update + insert

18

• Maintain two separate Bε-tree indexes:
metadata index: path -> struct stat
data index: (path,blk#) -> data[4096]

• Implications:
§ fast directory scans
§ data blocks are laid out sequentially

File System è Bε Tree

19

Operation Roundup

read
write
metadata update
readdir
mkdir/rmdir
unlink
rename

range query
upsert
upsert
range query
upsert

*delete each block
*delete then
reinsert each block

Operation Implementation

20

• Problem: Write-back caching can convert
single-byte to full-page writes

• upserts enable BetrFS to avoid this write
amplification

Integrating BetrFS with the page
cache

21

Page cache integration #1:
blind write

Page cache

/home/bill/foo.txt

upsert(/home/bill/foo.txt,)

write(/home/bill/foo.txt,)

upsert(/home/bill/foo.txt,)

22

Page cache

/home/bill/foo.txt

upsert(/home/bill/foo.txt,)

write(/home/bill/foo.txt,)

upsert(/home/bill/foo.txt,)

Target page
is cached.

Page cache integration #2:
write-after-read

23

Page cache

/home/bill/foo.txt

write(/home/bill/foo.txt,)

Target page
is cached.

Page cache integration #3:
write to mmap’ed file

24

• By rethinking the interaction between the
page cache and the file system, we benefit
more than simply speeding up individual
operations
§ use upserts to avoid unnecessary reads
§ use upserts to avoid write amplification

Page-cache takeaways

25

System Architecture

VFS

ext4

Page Cache

Disk

unmodified*

new code

26

• Do we meet our performance goals for small,
random, unaligned writes?

• Is BetrFS competitive for sequential I/O?
• Do any real-world applications benefit?

Performance Questions

27

• Dell optiplex desktop:
§ 4-core 3.4 GHz i7, 4 GB RAM
§ 7200RPM 250GB Seagate Barracuda

• Compare with btrfs, ext4, xfs, zfs
§ default settings for all

• All tests are cold cache

Experimental Setup

28

0.1

1

10

100

*lower is better

Ti
m

e
(s

) BetrFS
btrfs
ext4
xfs
zfs

1000 Random 4−byte writes

Small, random, unaligned writes are
an order-of-magnitude faster

• 1 GiB file, random data
• 1,000 random 4-byte writes
• fsync() at end

29

● ●
●

●
● ●

● ●
● ●

100

1000

10000

100000

0 1M 2M 3M
Files Created

*higher is better

Fi
le

s/
se

co
nd

● BetrFS
btrfs
ext4
xfs
zfs

Small File Creation

Small file creates are an order-of-
magnitude faster

• create 3 million files and
write 200-bytes to each

• balanced directory tree
with fanout 128

• performance over time

30

Sequential I/O

0

25

50

75

100

read write
Operation

*higher is better

M
iB

/s

BetrFS
btrfs
ext4
xfs
zfs

1GiB Sequential I/O • Write random data to file,
10 4K-blocks at a time

• Sequentially read data back

31

BetrFS forgoes indirection for
locality: delete, rename O(n)

●

●

●

●

●

0

100

200

300

25
6M

iB

51
2M

iB
1G

iB
2G

iB
4G

iB

File Size

Ti
m

e
(s

)

● BetrFS

BetrFS Delete Scaling • write random data to file,
fsync() it

• delete file

32

0

20

40

60

80

Ti
m

e
(s

)

BetrFS
btrfs
ext4
xfs
zfs

grep −r

0

5

10

15

20

Ti
m

e
(s

)

GNU Find

BetrFS forgoes indirection for
locality: fast directory scans

• recursive scans from root of
Linux 3.11.10 source

• GNU find scans file
metadata

• grep –r scans file
contents

33

0

200

400

600

*lower is better

Ti
m

e
(s

) BetrFS
btrfs
ext4
xfs
zfs

IMAP
(50% read, 50% mark or move)

• Dovecot 2.2.13 mail server
using maildir

• 26,000 sync() operations

BetrFS Benefits Mailserver
Workloads

34

BetrFS Benefits rsync

0

10

20

30

*higher is better

M
B

/ s

BetrFS
btrfs
ext4
xfs
zfs

In−place rsync of
Linux 3.11.10

• rsync Linux source tree to
to new directory on same FS

• copying to an empty directory

35

• Do we meet our performance goals for small,
random writes?

• Is BetrFS competitive for sequential I/O?
§ More work to do here

• Do any real-world applications benefit?
§ More experiments in paper

Performance Questions

36

• Cake && Eat: One file system can have good
sequential and random I/O performance

• WOI performance requires revisiting many
design decisions
§ inodes
§ write-through vs. write-back caching
§ perform blind writes whenever possible

betrfs.org – github.com/oscarlab/betrfs

BetrFS

37

• What problems do you see?
§ Are there operations that were slower than

expected?
§ What are the bottlenecks of those operations

• What information was left out?
§ Be-tree details
§ SSDs

• Next steps?

Thinking Critically

