BetrFS: A path-based write-
optimized file system

CSCl 333
Spring 2019

Last Class

* B€trees
= Operations
= Asymptotics
* Write optimization: tips, tricks, and secret sauce

= Batched updates: only do work when you have
enough to do that the setup is worth it

" Read-write asymmetry
* Blind updates whenever possible

" Big nodes, modest fanout

This Class

* The pros and cons of indirection

* How do we make a file system using B® trees?
= Converting file system operations to kv-operations
" Synergies with write-optimization and the OS

* Evaluating performance and being critical
* The value of iteration and rethinking designs

Today’s Strategy

* Two conference talks on BetrFS v1 and v2
" What is the goal of a conference talk?
" What is the goal of a lecture?

 Why present this work?

" Long project history, spanning 6+years

* I'll fill in the gaps and give context, but ask questions
because | have "the curse of knowledge”

* 4 consecutive FAST papers, 3 BP nominations, 1 BP

" | hope you’ll poke holes!

RUTGERS |

BetrFS: A right-optimized, write-
oplimized file system

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng
Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael
Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter

Stony Brook University, Tokutek Inc., Rutgers University, Massachusetts Institute
of Technology

ext4 is good at sequential I/O

120 -

80 -

MB/s

40

Sequential 1/0

*higher is better

* Disk bandwidth spec:

125 MB/s

 Workload: 1GiB sequential

write

e ext4 bandwidth:

= 104 MB/s

ext4 struggles with random writes

120 -

80 -

MB/s

40

0 ¢

Random Overwrites

*higher is better

* Disk bandwidth spec:

125 MB/s

 Workload: Small, random
writes of cached data

e ext4d write bandwidth:

= 1.5 MB/s

What is going on here?

 Random write performance dominated by
seeks

* Back-of-the-envelope:
" Average disk seek time is 11ms
= Seek for every 4KB write

" Implies maximum 0.4MB/s bandwidth

* Previous benchmark benefits from locality, good 1/O
scheduling

Ext4 Sequential I/O

Disk 10

255835

252966

Disk offset (MB)
]
-1
8

247227

244358
o

Time (seconds)

Disk 10

257678

254859

Disk offset (MB)
B
g
8

249221

246402 L . . L L
0

Time (seconds)

Ext4 Random I/O

Disk 10

Avoiding seeks: log-structured
file systems

* Pros:
= writing data is just an append to the log

e Cons:
= file blocks can become scattered on disk
" reading data becomes slow

Logging still presents a tradeoff between random-write
and sequential-I/O performance

BeirFS

e Use write-optimized dictionaries (WODs)

" on-disk data structures that rapidly ingest new data
while maintaining logical locality

* Create a schema that maps file operations to
efficient WOD operations

* Implemented in the Linux kernel
" exposed new performance opportunities

Advancing write-optimized FSes

* Prior work: WODs can accelerate FS operations

u TO ku FS [Esmet, Bender, Farach-Colton, Kuszmaul ‘12], KVFS [Shetty, Spillane, Malpani,

Andrews, Seyster, and Zadok ‘13], Ta ble FS [Ren and Gibson ‘13],
" Prior WOFSes in user space

e BetrFS goal: explore all the ways write-optimization
can be used in a file system

= explore the impact of write-optimization on the
interaction with the rest of the system

BeirFS uses B:-Trees

* Bé-trees: an asymptotically optimal key-value store

* BEtrees asymptotically dominate log-structured
merge-trees

 We use Fractal Trees, an open-source B&-tree
implementation from Tokutek

B:-Tree Operations

* Implement a dictionary on key-value pairs

" insert(k,v)

get, put, and delete

= v = search(k) elements one-at-a-time

= delete(k)
= k'’ = successor (k) q"ﬁ?{,:,:aegge
m ke’ k)

= predecessor (

* New operation:
= upsert(k, f)

B:-frees search/insert asymmetry

e Queries (point and range) comparable to B-trees
= with caching, ~1 seek + disk bandwidth
" hundreds of random queries per second

* Extremely fast inserts
" tens of thousands per second

To get the best possible performance,
we want to do blind inserts (without searches)

upsert = update + insert

upsert(k, f)

* An upsert specifies a mutation to a value
" e.g. increment a reference count
= e.g. modify the 5t byte of a string
* upserts are encoded as messages and inserted
into the tree
= defer and batch expensive queries

= we can perform tens of thousands of upserts per
second

File System = B¢ Tree

* Maintain two separate Bé-tree indexes:

metadata index: path -> struct stat
data index: (path,blk#) -> data[4096]

* Implications:
" fast directory scans
= data blocks are laid out sequentially

Operation Roundup

Operation Implementation

read range quer

write upsert

metadata update upsert Efficient
readdir range query directory scans
mkdir/rmdir upsert

unlink *delete each block _ =y
rename *delete then single WOD

) operation
reinsert each block b

Integrating BetrFS with the page
cache

* Problem: Write-back caching can convert
single-byte to full-page writes

* upserts enable BetrFS to avoid this write
amplification

Page cache integration #1:
blind write

write(/home/bill/foo.txt, D)

Page cache No cached

page.

Is the target

page
cached?

/home/bill/foo.txt

‘-------
Il

e L L T

upsert(/home/bill/foo.txt, D)

‘ upsert(/home/bill/foo.txt, D) \

Page cache integration #2:
write-after-read

write(/home/bill/foo.txt, D)

Page cache

Target page
/home/bill/foo.txt is cached.

_— Target page
‘ is clean.

\ Cached page is

now consistent
with disk.
‘ upsert(/home/bill/foo.txt, D) \

Is the target

page

cac’ Is the target

page dirty?

‘------—~

upsert(/home/bill/foo.txt, D)

Page cache integration #3:
write o mmap’ed file

write(/home/bill/foo.txt, D)

Page cache

Target page

Is the target .
/home/bill/foo.txt is cached.

page

s Is the target

page dirty?

-----—~

Target page

We wait for page is dirty.

writeback to persist
ournewdata. g T

Page-cache takeaways

* By rethinking the interaction between the
page cache and the file system, we benefit
more than simply speeding up individual
operations

" use upserts to avoid unnecessary reads
" use upserts to avoid write amplification

System Architecture

|‘ unmodified*}

BetrFS Kernel i I
module registered | - new code |
with the VFS] N rerr A ’

ext4

Use an existing
file system as

Imported as a block manager

binary blob

Page Cache

[Disk]

Performance Questions

* Do we meet our performance goals for small,
random, unaligned writes?

* |s BetrFS competitive for sequential I/O?

* Do any real-world applications benefit?

Experimental Setup

* Dell optiplex desktop:
= 4-core 3.4 GHz i7, 4 GB RAM
= 7200RPM 250GB Seagate Barracuda

 Compare with btrfs, ext4, xfs, zfs
= default settings for all

e All tests are cold cache

NN T, ——
Small, random, unalighed writes are

an order-of-magnitude faster

1000 Random 4-byte writes + 1 GiB file, random data
100- e 1,000 random 4-byte writes
e fsync() atend

Time (s)

BetrFS benefits

0.17s vs. > 10s from blind and

sub-block writes

*lower is better

Small file creates are an order-of-
magnitude faster

Small File Creation

e create 3 million files and

100000 - After creating the write 200-bytes to each
1 millionth file, balanced directory tree
what is the overall with fanout 128
throughput « performance over time
S 10000+
8 o BetrFS
) @ btrfs
L > ext4
i; w xfs
L 1000- wizts
Log Scale
100+

0 1M oM 3M
Files Created
*higher is better

Sequential I/O

1GiB Sequential 1/0

100-

75~

MiB/s

25-

read _
Operation
*higher is better

Write random data to file,
10 4K-blocks at a time
Sequentially read data back

Write all data at
least 2x

(Bé-tree journaling)

BetrFS forgoes indirection for
locality: delete, rename O(n)

BetrFS Delete Scaling * write random data to file,
300+ fsync() it
* delete file
__200-
L O(n) scaling:
GEJ o BetrFS must delete
i each block
100- individually
O- 1 1 1
P W L Q NG
S ¢ i
File Size

BetrFS forgoes indirection for
locality: fast directory scans

GNU Find

grep —r * recursive scans from root of
0. Linux 3.11.10 source
* GNU find scans file
metadata
grep —r scans file
contents

20

60 -
15+

Time (s)

140

full-path keys let
BetrFS efficiently
20- implement scans using
range queries

BeilrFS Benefits Mailserver
Workloads

IMAP « Dovecot 2.2.13 mail server
(50% read, 50% mark or move) using maildir
* 26,000 sync () operations

BetrFS
btrfs
ext4
xfs

zfs

600 -

400 -

Time (s

200-

*lower is better

BetrFS Benefits rsync

In—place rsync of « rsync Linux source tree to
Linux 3.11.10 to new directory on same FS
e copying to an empty directory
30-
0 20- BetrFS --in-place
~ oure flag lets BetrFS i
o oxta g lets BetrFS issue
= xfs blind writes
zfs
10-
0_

*higher is better

Performance Questions

* Do we meet our performance gog#¥ for small,

random writes?

* |s BetrFS competitive for sequential /07 %
*

* Do any real-world applications benefit?

= More work to do here

=" More experiments in paper

BeirFS

* Cake && Eat: One file system can have good
sequential and random 1/O performance

 WOI performance requires revisiting many
design decisions

" jnodes
= write-through vs. write-back caching
= perform blind writes whenever possible

betrfs.org-github.com/oscarlab/betrfs

Thinking Critically

 What problems do you see?

" Are there operations that were slower than
expected?

" What are the bottlenecks of those operations

e What information was left out?

= Be-tree details
= SSDs

* Next steps?

