Meeting 17 :: B® Trees

BE-trees

BE-trees, like LSM-trees are an example of a write-optimized dictionary. By tuning BE-tree parameters, Bé-trees present a
range of points along the optimal read-write performance curve.

Learning Objectives

 Be able to describe the way that BE-tree operations are performed, including upserts
 Be able to describe the asymptotic performance of Bé-tree operations
¢ Be able to describe the affects of changing B and €.

 Be able to compare Bé-trees to B-trees and LSM-trees

Operations

BE-trees implement all of the standard dictionary operations

insert(k,v)

e v = search(k)

{(k;,vj), ... (kj, vj)} = search(ky, k»)
delete(k)

But they add a new operation:

o upsert(k, #, A)

Upserts

Upserts provide a callback function # and a set of function arguments A, that are applied to the value associated with a
target key.

Upserts provide a general mechanism for encoding updates, but an important use case is performing blind updates. With
upserts, users can avoid the need for a read-modify-write operation; instead, an upsert can encode a change as a function
of the existing value.

1. What type of operations can be naturally encode using an upsert message?

Messages

Internal B-tree nodes contain a buffer for messages. Messages are updates destined for a target key. Messages are
inserted into the root of the B®-tree, and flushed towards the leaves. When a message reaches its target leaf, the message
is applied, and the resulting key-value pair is written.



Tuning Performance

BE-trees give users two knobs to turn: B and €.

e Bis generally large (2-8 MiB or more)
o Using large nodes make range queries fast --- one seek per B bytes incentivizes large leaf nodes.

o Batching reduces the write amplification problem of using large nodes in standard B-trees.

e € must be between 0 and 1
o asymptotic analysis is often easier at 1/2)

o In practice, you often pick a maximum fanout rather than strictly choosing €

o A large fanout makes the tree "short and fat"

Thought Questions

BE-tree

1. How does the batch size affect the cost of an insert operation?
2. How does setting €=1 affect:

e read performance?

e update performance?
3. How does setting €=0 affect:

¢ read performance?

e update performance?

4. What data structures correspond to each of those settings?

5. How does a large B affect B-tree:

* read performance?

e update performance?
6. How does a large B affect BE-tree:

¢ read performance?

¢ update performance?

7. How does caching play into Bé-tree performance? (Hint: where does most of the data live?)

8. Compare a BE-tree to an LSM tree.

¢ How does compaction compare to flushing?
¢ How do the two data structures compare for point queries?
¢ How do the two data structures compare for range queries?

e How would an LSM-tree perform in a workload with lots of upserts?



